• Title/Summary/Keyword: Ginseng seed

Search Result 226, Processing Time 0.025 seconds

Ginseng Response to Graminicides (그래미니시드에 대한 인삼의 반응)

  • V.Souza Machado;Ali, A.
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.14-18
    • /
    • 1989
  • The graminicides fluazifop-p-butyl and sethoxydim effectively controlled annual grass weeds in 1,2 and year old ginseng crops during a 2 year study. Ginseng plants in the graminicide treated plots showed an early senescence of the shoots ; and at harvest the average root weight (g/root) and yield (kg/m) were slightly lower in these plants than in the untreated check plots. Roots of the graminicide treated plots remained viable to regenerate shoots. The greenhouse study indicated that shoot growth and seed development in ginseng plants were more sensitive to the graminicide treatment than the roots.

  • PDF

The Effect of Deep Sea Water on Seed Priming of Sweet Pepper (Capsicum annum L.), Rice (Oryza sativa L.) and Ginseng (Panax ginseng C.A.Meyer)

  • Yoon Byeong-Sung;Shrestha Surendra Lal;Kang Won-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.3
    • /
    • pp.411-417
    • /
    • 2006
  • This experiment was conducted to study whether priming with deep sea water results in enhancement of seed germination and to identify the optimum concentration of the priming solution, and duration of priming using sweet pepper (Cv. California wonder), rice (Cv. Ilpum) and ginseng seed. Sweet pepper and rice seeds were primed with 5 various concentrations (5%, 10%, 15%, 20% and 30%) for deep sea water for 48 hours, 24 hours and 12 hours at $25^{\circ}C$ and ginseng seeds in 5%, 10%, 15%, 20%, 25% and 30%, and 2,4,6, and 8 electrical conductivity (EC) which were made by desalinating deep sea water. Priming in deep sea water (DSW) improved the early and final germination percentage, mean germinal on rate, emergence percentage and root and shoot length, compared with plain water, $KNO_3$ and without priming treatments. In sweet pepper, 24 hours priming with 5 percentage DSW significantly improved the early germination percentage and radical length. It has also improved the mean germination and emergence days and early emergence percentage, compared with $KNO_3$ and control. Whereas, in rice, 48 hours priming with 10 percent DSW significantly improved the early germination percentage, plumule emergence percentage, root length and shoot height. Hence the best seed priming treatment on sweet pepper and Rice are 24 hours with 5 percentage DSW and 48 hours with 10 percentage DSW, respectively, whereas in ginseng, priming with EC4, EC8 and 25% DSW had shown better germination.

Effects of Temperature Regimes for Storage of Ginseng Seeds during Cold-stratification for Spring Sowing

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Moon, Ji Won;Jang, In Bok
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.44-44
    • /
    • 2019
  • Spring sowing of ginseng seeds often results in failure of seedling establishment. Storage condition during winter, sowing time, and seed treatment might effect on germination. Here we tested effects of temperature regimes of seed storage on spring sowing. Dehisced wet or dry ginseng seeds were stored at $2^{\circ}C$, $-2^{\circ}C$, $-3.5^{\circ}C$, or alternating temperature: at $2^{\circ}C$ until December, $-3.5^{\circ}C$ in January, and $2^{\circ}C$ in February, and sowed in March. In overall, emergence rate was dependent on storage temperature, and $-3.5^{\circ}C$ resulted poorest emergence than other conditions. Storage of wet seeds in alternating temperature resulted highest emergence rate. Seed dry also affected on emergence rate, while it was dependent on the storage temperature. In terms of growth, storage at $2^{\circ}C$ as wet seed resulted highest growth, and dried seeds resulted poorer growth than wet seeds. As a modification of alternating temperature, seeds were stored at $2^{\circ}C$ at first, then transferred to $-3.5^{\circ}C$ at Nov 30, Dec 20, and Jan 10, each. When transfer date was delayed, emergence rate was increased. We suggest that seed storage temperature for ginseng should not be decreased below $-2^{\circ}C$, and alternative temperature regime for successful spring sowing could be useful.

  • PDF

Quality Characteristics of Ginseng Seed Oil Obtained by Different Extraction Methods (추출방법에 따른 인삼씨유의 품질특성)

  • Kim, Ji-Eun;Lee, Seul;Yoo, Kyung-Mi;Lee, Kyoung-Hae;Kim, Kyung-Tack;Lee, Myung-Hee;Hwang, In-Kyeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.439-445
    • /
    • 2014
  • This study aimed to determine the quality characteristics of ginseng seed oil as well as evaluate the efficacy of ginseng seed oil as a food resource. Ginseng seed oil was obtained by different extraction methods; from solvent extraction oil, supercritical fluid extraction oil, and screw pressed extraction oil. Total unsaturated fatty acids were present at 97.72~97.92%. Oleic acid (80.13~81.16%) was the highest, followed by linoleic acid (14.98~15.69%). The total phenol content (mg gallic acid equivalent/100 g oil) was higher in screw pressed extraction oil ($56.32{\pm}1.47$) compared to others. ${\gamma}$-Tocopherol was only present in ginseng seed oil and screw pressed extraction oil showed the highest levels of ${\gamma}$-tocopherol ($5.95{\pm}0.25$ mg/100g oil) among the tested samples. Screw pressed extraction oil showed the greatest oxidative stability with an induction time of 16.58 hours. Acid values and peroxide values of ginseng seed oil increased with increasing storage period. The total phenol and ${\gamma}$-tocopherol contents were higher in screw pressed extraction oil than in other ginseng seed oils, which suggests that screw pressed extraction oil has the greatest oxidative stability.

Determination of the Synthetic Time and the Transport Pattern of Vicilin and Legumin in Ginseng Endosperm Cell Using Double Immunogold Labeling (이중 면역금입자 표지법을 이용한 인삼 배유세포내 Vicilin과 Legumin의 합성시기 및 수송방식)

  • Lee, Chang-Seob;Yu, Seong-Cheol;Kim, Woo-Kap
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Vicilin and legumin, the storage Proteins of seed, were Purified from ginseng (Panax ginseng C.A. Meyer) endosperm cells. They were immunized in rabbits, and antibodies were raised respectively. Using these two antibodies, double immunogold labeling of vicilin and legumin was carried out to determine the gap of synthetic time and the transport pattern of vicilin and legumin in the ginseng endosperm cells. Vicilin and legumin were synthesized at the same time at early embryo developmental stage. They were secreted from the Golgi bodies and accumulated into the small vacuoles. As the endosperm cells developed, vicilin and legumin localized in the small vacuoles were gradually transported toward the large central vacuole where they were stored. Protein bodies were derived from the vacuoles filled with proteins and distributed in the endosperm cells of mature red seed. Protein bodies were various in size from 1 to 8 ${\mu}{\textrm}{m}$ in which vicilin and legumin were mixed each other. The number of small particles labeled on the vicilin was greater than that of large particles labeled on the legumin in the protein bodies indicating that the amount of vicilin is higher than that of legumin in the protein bodies.

  • PDF

Antioxidant activities of germinated Ginseng(Panax ginseng C.A. Meyer) Seed

  • Mi-Ok Chae;So-Hyun Kim;Yong-Sung Park;Il-Doo Kim;Dong-Hyun Shin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.332-332
    • /
    • 2022
  • Ginseng has been traditionally used in Asia including Korea, for health care and to treat verities of different diseases such as immune disease, liver disease, and cancer. The current study was aim to unveal the most efficient method such heating, prethanol-A and ultrasound, for cured extraction of ginseng with higher antioxidant activity. The current results shows a significant improvement in the inhibition of H2O2 by the ultrasound method than the HT and Pre-A method. Thus this inhibition in free redical is possible through the increase in the antioxidant activity. Therefore in this study the CAT, APX and phenolic and flavonoid content was increased in ginseng seed and germinated ginseng sprouts by the US method, while the POD, SOD and GSH activity was increased in HT method. This suggest that the different extraction method in different stage of ginseng growth show a different biochemical and metabolites activation. Thereby the Ultrasound and Heat extraction was a feasible alternative method for extracting interested ingredients from biological materials.

  • PDF

Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Kim, Young-Chang;Lee, Jei-Wan;Seo, A-Yeon;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.504-513
    • /
    • 2011
  • In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.

Effect of Seed Moisture Content on Seed Storage of Dehisced Ginseng Seeds (종자 수분함량에 따른 개갑 인삼 종자의 저장성 연구)

  • Suh, Su Jeoung;Yu, Jin;Jang, In-Bae;Kim, Young-Chang
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.183-191
    • /
    • 2022
  • Ginseng (Panax ginseng C.A. Meyer) is a perennial plant and propagates by seeds, and those need after-ripening for germination. To be ready for climate change and to ensure a stable seed supply, the technique for storing seeds in short-term and long-term in large quantities is required. In this study, dehisced ginseng seeds from two locations, batch #1 and batch #2, were stored at -3.5℃ with different moisture content, and after 3, 15, and 27 months of storage, the percentage of radicle emergence and shoot emergence were measured. After 3 months, radicle emergence and shoot emergence were normal only when the seed moisture content was more than 35%, and overall, germination was higher in batch #2 than in batch #1. After 15 months, the partially dehydrated seeds, with a moisture content between 45 to 54%, showed the highest germination rates, and most of the undried seeds were spoiled and failed to germinate. Seeds with moisture content lower than 25% had poor germination, too. The partially dehydrated seeds also succeeded in germination and growth in the soil after 15 months of storage, but deteriorated after one more 1 year, too. In summary, ginseng seeds look like have temperate recalcitrant seed characteristics, and partial dehydration allows extension of seed longevity.

Effects of Storage Temperature and Seed Treatment on Emergence and Growth Properties of Panax ginseng at Spring-sowing (저장온도 및 종자 처리가 봄파종 인삼 출아와 생장에 미치는 영향)

  • Suh, Su Jeoung;Yu, Jin;Jang, In Bok;Moon, Ji Won;Lee, Sung Woo;Jang, In Bae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • Background: In Korea, seeds of Panax ginseng C. A. Meyer need to be stored under cold temperature and high humidity condition for months to break physiological dormancy, making storage difficult until spring-sowing. This study was conducted to test the effects of seed storage conditions and seed treatment on the emergence of seedling after spring-sowing in a nursery greenhouse. Methods and Results: After dehiscence, endocarp dried seeds in mild or completely, and wet seeds were stored in $2^{\circ}C$ and $-3.5^{\circ}C$ during winter. Storage at $-3.5^{\circ}C$ resulted in a lower emergence rate (ER) than that at $2^{\circ}C$, and additional cold ($2^{\circ}C$) treatment before or after storage at $-3.5^{\circ}C$ increased the ER. Endocarp dehydration prevented pre-germination at $2^{\circ}C$ storage and increased the ER of seeds stored at $-3.5^{\circ}C$. ER was also dependent on the batch of seeds. However, seed treatments before sowing had only limited effects on ER. Root loss was the main reason for damping-off; prolonged cold storage of seeds increased damping-off, as the detection of pathogens was not high. Conclusions: This study showed that storage conditions such as temperature and moisture content of seeds, affect the ER after spring-sowing and vitality of seedlings, suggesting further attention on seed control for secure seedling stands after spring-sowing.