• Title/Summary/Keyword: Ginseng root

Search Result 1,133, Processing Time 0.025 seconds

Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality (인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

Effect of Seed Size on Seedling Performance in Panax g.inseng (종자의 크기가 묘삼의 생육에 미치는 영향)

  • Kim, Jong-Man;Lee, Seong-Sik;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • Ginseng seeds were gathered from 3,4,5 and 6 years of age and were classified into four qroups (below 4mm, 4∼5mm, 5∼6mm and above 6mm in across sieve). They were sown in seedling bed and some characters were investigated in each qroup of seed size. 1. The distribution of seed size of below 4mm, 4-5mm, 5-6mm and 6mm were 23.7%, 60.8%, 12.4% and 4.5%, respectively. 2. The ratio of seed coat dehiscence was not affected by seed size but emergence ratio and emerging vigor were superior in large seed. 3. The large seed showed superiority in stem length, stem diameter, leat and also in root length, root diameter and root weight. but diseased root was not affected by seed size. The effect of age(seed harvest) was not significant on all those characters.

  • PDF

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.

Seasonal Change of Growth Regulator Activity in Panax ginseng Root (인삼근중 생육조절제의 계절변화)

  • Hoon Park;Kab Sig Kim;Chong Hwa Lee
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.187-192
    • /
    • 1986
  • Activity of endogenous growth regulator in 4th year Panax ginseng root was investigated by second leaf sheath test of rice seedling and paper chromatogram of a acidic fraction of methanol extract before (March 28) and after (May 9) emergence of root bud, at the late season (Sept.4) and after leaf fall (November 11). GA$_3$ and ABA were used as reference. According to paper and high performance liquid chromatography of samples and authentic growth regulators the presence of insole acetic acid (IAA), gibberellic acid (GA$_3$) and abscisic acid (cis and trans ABA) was confirmed. These three regulators appeared to consist of major system though the existence of other regulators could not be ruled out. IAA activity seemed little changed through out the seasons. GA activity decreased in the later stages while ABA activity increased.

  • PDF

Effect of Physical Properties of Soil on Ginseng Seedling Growth in Nursery Bed (양식묘단 토양의 물리성이 묘삼생육 및 수량에 미치는 영향)

  • 이종철;변정수
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.287-290
    • /
    • 1995
  • This study was conducted to elucidate the effect of physical properties of soil in nursery bed with different densities on growth of ginseng seedling. Stem length, leaf length and leaf width of ginseng seedling showed the decreasing tendency with increasing the hardness of the nursery soil. Fresh root weight per seedling and number of available seedlings were increased significantly with decrease of the soil hardness. For solid, liquid phases, bulk density and hardness of soil, negative correlations were shown in stem length, leaf length, leaf width, root weight per seeding, and number t of available seedlings. On the other hand, gas phase, air permeability and porosity of soil had positive correlations with stem length, leaf length, leaf width, root weight per seedling and number of available seedlings. Key words Yang-Jik nursery, ginseng seedling, soil physical properties.

  • PDF

Red-Colored Phenomena of Ginseng(Panax ginseng C. A. Meyer) Root and Soil Environment (인삼근 적변현상과 근권 토양환경)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • In order to elucidate the mechanism of red-colored phenomena(RCP) in ginseng(Panax ginseng C.A. Meyer), distribution of inorganic elements of ginseng root and its surrounding soil, and microflora in the soil were investigated. Red brown colored-substances were accumulated in the cell wall of epidermis at early stage of red-colored ginseng (RCG). Cell wall of the late stage of RCG was disordered and microorganisms were shown in the disordered cell wall. Al, Si and Fe contents among inorpanic elements in the epidermis of RCG were higher at two or three times than that of healthy ginseng. On the other hand, K content was higher at three times in healthy ginseng than that of RCG. Especially, Fe content was higher at three times in lateral roots of RCG than that of healthy ginseng. Total 21 strains of microorganisms were isolated on the 523 medium from surface soil, surrounding soil of both healthy and RCG, and RCG. Six strains of microorganisms among them were resistant to 2 mM Fe. Two species in Bacillus app. and Lactobacillus app. , and one species in Micrococcus sp. and Npisseria sp. respectively were identified. It seemed that RCP was closely related with the distribution and uptake of inorganic elements, was also correlated Fe-independent metabolism of microorganisms.

  • PDF

A Ginseng Saponin Induces Production of Nitric Oxide in Macrophages (인삼사포닌에 의한 대식세포 일산화질소 생성 유도)

  • Kim Ji Yeon;Lee Hwa Jin;Kim Ji Sun;Ahn Hanna;Ryu Jae-Ha
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.80-85
    • /
    • 2005
  • Ginseng root is an important remedy in oriental countries, which has been used for thousands of years. Saponins of ginseng root has been known to be the major component which mediate diverse pharmacological actions of the ginseng. Heat processing of ginseng root potentiates its biological activity such as anti-tumor and anti-oxidative activities. The butanol fraction of heat-processed ginseng (HGB) induced the production of nitric oxide in macrophages in a dose-dependent manner with IFN-${\gamma}$(30 U/ml) priming. The active component was identified as ginsenoside-$Rg_5$ from the activity-guided purification. Ginsenoside $Rg_5$ is one of major components of heat-processed ginseng and red ginseng that is responsible for the potentiated biological activities of processed ginseng. The induction of NO production by heat-processed ginseng might contribute to the potentiated biological activity of heat-processed ginseng.

Effects of fermented ginseng root and ginseng berry on obesity and lipid metabolism in mice fed a high-fat diet

  • Li, Zhipeng;Kim, Hee Jung;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.312-319
    • /
    • 2018
  • Background: Previous studies have shown that both ginseng root and ginseng berry exhibit antiobesity and antidiabetic effects. However, a direct comparison of the efficacy and mechanisms between the root and the berry after oral administration remains to be illuminated. Methods: In this study, we observed the effects of fermented ginseng root (FGR) and fermented ginseng berry (FGB) on obesity and lipid metabolism in high-fat diet induced obese mice. Results: FGR and FGB significantly inhibited the activity of pancreatic lipase in vitro. Both FGR and FGB significantly suppressed weight gain and excess food intake and improved hypercholesterolemia and fatty liver, while only FGR significantly attenuated hyperglycemia and insulin resistance. Both FGR and FGB significantly inhibited the mRNA expression of Ldlr and Acsl1 while FGR also significantly inhibited expression of Cebpa and Dgat2 in liver. FGR significantly decreased the epididymal fat weight of mice while FGB significantly inhibited the mRNA expression of genes Cebpa, Fas, Hsl, Il1b, and Il6 in adipose tissue. Conclusion: Saponin from both FGR and FGB had a beneficial effect on high-fat diet-induced obesity. Compared to FGB, FGR exhibited more potent antihyperglycemic and antiobesity effect. However, only FGB significantly inhibited mRNA expression of inflammatory markers such as interleukins $1{\beta}$ and 6 in adipose tissue.

Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng (인삼 뿌리썩음병 발병에 미치는 토양전염성병원균과 토양환경요인)

  • Shin, Ji-Hoon;Yun, Byung-Dae;Kim, Hye-Jin;Kim, Si-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • Disease is the major problem in ginseng cultivation from seed stratification, soil preparation prior to planting, right through to drying of the roots. There are many soil-borne disease pathogen in rhizosphere soil environment, furthermore occurrence of diseases by a diverse group of fungi and related organisms are closely related to various soil condition. Observable symptoms for soil-borne diseases include wilting, leaf death and leaf fall, death of branches and limbs and in severe cases death of the whole plant. The fungus Cylindrocarpon destructans is the cause of root rot characterized by a decay of the true root system in many ginseng production areas in Korea. Some pathogens are generally confined to the juvenile roots whilst others are capable of attacking older parts of the root system. However, the relation between the soil environmental characteristics and ginseng root rot by soil-borne disease pathogen is not clearly identified in ginseng field. In this paper, we reviewed soil-borne plant pathogen causing root rot disease of ginseng with respect to soil environment.

Effect of Gibberellin and Kinetin on Bud Dormancy Breaking and Growth of Korean Ginseng Root (Panax ginseng C.A. MEY.) (고려인삼의 근아휴면타파와 생육에 대한 Gibbrerllin과 Kinetin의 효과)

  • Park, Hoon;Kim, Kap-Sik;Bae, Hyo-Won
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1979
  • Effect of gibberllin on the breaking of bud dormancy of root and growth of aerial parts were investigated under laboratory and field condition for the prolongation of shoot growth duration, shortening of fruit bearing age and the increase of root yield. Drop application of GA (0.5ml of 50ppm) on rhizome of one year old root broke bud dormancy better than by low temperature. Soaking for one hour of one year old roots which wintered in the field in GA (50-200ppm) greatly accelerated the emergence of new buds while kinetin was only effective at low level (50ppm). GA substantially increased stem length in early stage and petiole length later on while kinetin increased stem diameter. Under the field condition with polythylene film tunnel (PET) in early spring the soaking in GA (50ppm for 1 hour) of rhizome of 4 year old root with replanting and dropping GA (50ppm, 1ml) on rhizome without replanting brought earlier emergence (29days) in comparison with that in the usual field. PET alone caused 14 day-early emergence. GA increased the length of stem and petiole only in early stage and replanting decreased only petiole length in later stage. Soaking in GA with replanting caused the Pronounced decrease in peduncle length, percentage of (ruin set and dry weight of reproductive organ (fruits and peduncle). Dropping without replanting showed significant decrease only in dry weight of reproductive organ. Fruit maturing was 20 days earlier than in usual held with little difference between GA and PET. It is well expected that GA could be used for early emergence of bud, shortening of root dormancy period, thinning of fruit and higher root yield according to application amount and methods.

  • PDF