• Title/Summary/Keyword: Ginseng leaves

Search Result 356, Processing Time 0.031 seconds

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Studies on the Ginseng Plants(III) -Radioactive Sodium $Acetate-U-C^{14}$ Feeding Experiments- (인삼식물(人參植物)에 관한 연구(III) -동위원소화합물(洞位元素化合物) Sodium $Acetate-U-C^{14}$을 투여한 실험-)

  • Kim, Jung-Yun;Staba, E. John
    • Korean Journal of Pharmacognosy
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 1974
  • The radioactive compound sodium $acetate-U-C^{14}\;(C^{14}-acetate)$ was administered to two- and four-year-old July and September American ginseng (Araliaceae, Panax quinquefolium L.) plants and cuttings. The $C^{14}-acetate$ uptake was approximately 99%. The autoradiochromatograms suggest that the saponins isolated by preparative thin-layer chromatography contained impurities, especially those isolated from the leaf and stem extracts. The root and fruit methanol extracts yielded relatively pure saponins. The large amounts of panaquilin B and its proximity to panaquilin C on preparative thin-layer plates resulted in some admixing. The average concentration (% plant dry weight) of semi-purified saponins were high in the leaves (13.8%), as compared to fruits (9.8%), stems (7.9%) and roots (6.3%). The average percentage of $C^{14}-acetate$ incorporation into panaquilins was 4.8%. The average percentage of $C^{14}-acetate$ incorporation into panaquilins B and C was higher (1.40% and 1.13%, respectively) than that into panaquilins C, (d), G-1 and G-2 (0.75%, 0.65%, 0.13% and 0.53%, respectively). Panaquilin synthesis may be depending upon the part, collection period and age of the plant. The average percentage of $C^{14}-acetate$ incorporation into panaquilin B is high in roots (0.58%) and stems (0.48%); that into panaquilins C and (d) high in leaves (0.40% and 0.45%, respectively); and that into panaquilin E high in roots and leaves (0.55% and 0.50%, respectively). Panaquilin G-2 was synthesized in all parts of plants. The panaquilins appear to be biosynthesized more actively in July than September (exception-panaquilin G-1). Panaquilins B, C and G-1 may be biosynthesized more actively in four-year-old plants and panaquilins (d) and E more actively in two-year-old plants. The results from expectance with cuttings suggest that the panaquilins are synthesized de novo in the above-ground parts of ginseng plants, and that panaquilin G-1 may be synthesized de novo in the leaf. It is known from the tissue culture studies that panaquilins are produced by leaf, stem and root callus tissues and cailus-root cultures of American and Korean ginseng plants. Panaquilins may actively be synthesized de novo in most any cell or organ of the ginseng plants. It was verified that $C^{14}-acetate$ was incorporated into the panaxadiol portions of the panaquilins of two-year-old plants (sp. act. 0.56 mmcCi/mg) and four-year-old plants $(sp.\;act.\;0.54\;m{\mu}Ci/mg)$.

  • PDF

Effects of light intensity and temperature on photosynthesis and respiration of Panax ginseng leaves (인삼엽(人蔘葉)의 광합성(光合成)과 호흡(呼吸)에 미치는 광도(光度) 및 온도(溫度)의 영향(影響))

  • Park, Hoon;Lee, Chong-Hwa;Bae, Hyo-Won;Hong, Young-Pyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 1979
  • Effects of temperature and light intensity on photosynthesis, respiration and chlorophyll content of ginseng (Panax ginseng C. A. Meyer) were as follow. 1. Optimum light intensity for apparent photosynthesis at $25^{\circ}C$ was 25Klux($1.35mgCO_2/dm^2{\cdot}hr$) for two years old ginseng grown in pot and 30Klux($1.94mgCO_2/dm^2{\cdot}hr$) for the six years old palmate cut leaves. Optimum temperature at 25Klux was $15^{\circ}C$ ($1.40mgCO_2$) for the 2 years old and 20 to $22^{\circ}C$ ($2.03mgCO_2$) for the 6 years old. 2. Dark respiration increased almost linearly with the increase of air temperature till $25^{\circ}C$ (2.6times between $16^{\circ}C$ to $25^{\circ}C$ for the 6 years old and 1.8 times between $15^{\circ}C$ to $25^{\circ}C$ for the 2 years old). Dark respiration was 11.1 % of net photosynthesis at $16^{\circ}C$, 17.8% at $25^{\circ}C$ for the 6 years old and 40% at $15^{\circ}C$, 64.7% at $25^{\circ}C$ for 2 years old. 3. Stomata appeared only in abaxial surface (lower epidermis) and stomatal frequency was $37per\;mm^2$. 4. Above results together with other informations quoted here strongly suggest that air temperature is much better criteria than light intensity for the improvement of shading roof material and shading construction. That is to promise maximum light intensity unless air temperature is above $25^{\circ}C$.

  • PDF

Antineoplastic Natural Products and the Analogues (XI) -Cytotoxic Activity against L1210 Cell of Some Raw Drugs from the Oriental Medicine and Folklore- (항암성 천연물 및 그 유사체(XI) -한약재 및 민간약의 L1210세포에 대한 세포독성-)

  • Lee, Jeong-Hyung;Kang, Suck-Kyun;Ahn, Byung-Zun
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.4
    • /
    • pp.286-291
    • /
    • 1986
  • Forty herbal drugs which are described to have potential antitumor activity were solvent-fractionated with petroleum ether, ether and ethyl acetate in sequence. The cytotoxic activity was mostly shown in the ether fraction(40.54%) and petroleum ether fraction (35.15%), but scarcely in the water phase (10.8%), meaning that most of the active components had less polar property. Twenty-seven percent of the drugs tested were active, which is higher value than 10.4% of the random sampled drugs The drugs possessing the $ED_{50}$ values less than $10{mu}g/ml$ were the roots of Lithospermum erythrorhizon, Curcuma domestica, Salvia miltiorrhiza, Astragalus membraneceus and Scutellaria indica, the leaves of Panax ginseng, S. indica and Liriodendron tulipifera, the barks of Picrasma ailanthoides and Rhus vernifera, the herbs of Agrimonia pilosa and Siegesbeckia pubescens the seeds of Tricosanthes kirilowii, P. ailanthoides, and the stem of P. ginseng.

  • PDF

Performance of "KB 101" a New Burley Tobacco Resistant to Bacterial Wilt and Black Shank (내병성 버어리종 신품종 "KB 101"의 육성경과 및 특성)

  • 김대송;조천준;한철구;추홍구;정석훈;조명조;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.97-103
    • /
    • 1992
  • KB 101 is a bacterial wilt(Pseudomonas solanaceamm E.F. Smith) and black shank (Phytophthora nicotianae Breda de Haan Var. nicotianae Waterhouse) resistant cultivar of burley tobacco (Nicotiana tabacum L.) KB 101 was developed by the Korea Ginseng&Tobacco Research Institute, and released in 1987. KB 101 was developed from a single plant selection in the F2 generation derived from the double cross, [(Burley 21X Burley 37) X (Burley 64X Ky 16)]. Burley 37 and Burley 64 were the source of resistance to bacterial wilt and black shank. Yield trials were conducted in the Fs through F6 generations at the four Exp. Stn. of Korea Ginseng &Tobacco Research Institute as JB 7705-1. On-farm yield trials were conducted in the F7 through F9 generations at the 45 locations of burley tobacco growing area from 1984 to 1986 as KB 101. KB 101 has an erect growth habit similar to that of Burley 21: plant size is larger and has more leaves than those of Burley 21. It is late maturing cultivar that flowers approximately 3 days later than Burley 21. The physical characteristics and chemical composition of KB 101 were similar to those of Burley 21.

  • PDF

Growth and Chemical Properties of Oriental Tobacco as affected by Transplanting Time (오리엔트종 연초의 생육 및 화학특성에 미치는 이식시기의 영향)

  • Ryu, Myong-Hyun;Jung, Hyung-Jin;Lee, Un-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 1988
  • Oriental tobacco (KA 101) was transplanted from Mar. 25 to May 5 with 10 days interval in 1984 and 1985, and its agronomic characteristics, chemical properties ware compared to determine the Proper transplanting time of aromatic tobacco In Korea. As the transplanting was delayed, days to flowering of plant was shortened, length and width of largest leaf, leaf area index tended to decrease. Yield was highest for the Apr. 5th transplanting followed by Mar. 25th planting, then decreased as the planting date was delayed. Quality by price decreased as the transplanting was delayed later than Apr. 25. Delaying transplanting increased nicotine, total nitrogen and ash content, but decreased reducing sugar and petroleum ether extract of cured leaves, The content of volatile organic acids such as 3-methyl pentanoic acid was lower when it was transplanted later than Apr. 25th. Neophytadiene content increased as the transplanting was delayed, but there were no trends with the content of alcohols, aldehydes esters and ketones. Several quality indices including the ratio between the content of volatile organic acids plus petroleum ether extract and ash content plus pH was higher for the Apr. 5th transplanting.

  • PDF

Studies on Analysis of Growth Characteristics, Ability of Dry Matter Production, and Yield of Panax ginseng C. A. Meyer at Different Growth Stages with Different Cultivars and Shading Nets in Paddy Field (논토양에서 해가림 유형 및 품종별 인삼의 생육시기에 따른 생육특성, 건물생산 능력 및 수량성 비교)

  • Song, Beom-Heon;Chang, Yoon-Gi;Lee, Kyung-A;Lee, Sung-Woo;Kang, Seung-Won;Cha, Sun-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • This study was conducted to examine major growth responses, the production and partitioning of dry matter on different growth stages, and yields and to select the optimal shading material in both quality and productivity of ginseng. Two cultivars of ginseng, Cheonpoong and Geumpoong, were cultivated in the paddy soil with three different shading materials; three-layered blue and one-layered black polyethylene (TBP), blue polyethylene sheet (BPS), and aluminium-coated polyethylene sheet (APS). Plant heights were linearly increased until June 24 and then maintained with showing higher height in Cheonpoong than that in Geumpoong cultivar. Root lengths were gradually increased until October 16. They were longer in Cheonpoong than that in Geumpoong cultivar, showing slightly longer with APS compared to TBP and BPS. The ability of producing dry matter of leaves was much higher from April to June compared to those of other growth periods, whereas its ability of root was concentrated from the end of June to the end of August. Among the shading materials, the ability of producing dry matter of shoot was higher with TBP than those with BPS and APS, while its ability of root was not appeared certain tendency unlike the shoot. The yield of ginseng roots was the highest with TBP among three shading materials and it was higher in Cheonpoong than that of Geumpoong cultivar. The shading materials which affect the light intensity and the temperature would be considered as an important factor to get better quality and productivity of Korean ginseng.

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Structure and function of the secretory ducts in Panax ginseng C.A. Mayer (인삼 분비관의 구조와 기능)

  • Kim, Woo-Kap;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.10 no.1_2
    • /
    • pp.77-86
    • /
    • 1980
  • The distribution of the secretory ducts, fine structures of the secretory epithelial cells, and the ingredients of the metaplasmic inclusions were studied at light and electron microscopical levels in seeds, stems, leaves, and roots of ginseng. The secretory ducts occurred in the hypocotyl of the embryo, in the cortex of the roots, and also both inside and outside of each vascular bundle in the stems and leaves. Especially, it is considered that the circular layers of the secretory ducts in roots may represent their ages. The epithelial cell has well developed nucleolus, mitochondria and smooth endoplasmic reticulum. Sudanophyl and osmiophilic inclusions were found in the epithelial cytoplasm and duct lumen. But these inclusions were not observed when extracted with pyridin or alcohol. In contrast to the lumen with red color, the epithelial cells were blue in color as stained with nile blue, suggesting that the former inclusions are neutral lipid while the latter are acidic lipid. The electron density of the cell inclusions was quite high as fixed with osmium tetroxide, indicating that most of these secretory materials seem to be unsaturated lipid. Therefore, since ginseng secretory ducts are closely associated with the lipid metabolism, it should be called lipid canal or lipid duct.

  • PDF

Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

  • Liu, Fang;Ma, Ni;He, Chengwei;Hu, Yuanjia;Li, Peng;Chen, Meiwan;Su, Huanxing;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • Background: Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of $35^{\circ}C$. This developed HPLC-UV method provides an adequate linearity ($r^2$ > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products.