• Title/Summary/Keyword: Gimbal mechanism

Search Result 21, Processing Time 0.025 seconds

Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect (자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어)

  • Lee, Sang-Deok;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

Pointing Stability Study of the GOCI Scan Mechanism (해양탑재체 스캔 미캐니즘의 포인팅 안정성 연구)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.595-600
    • /
    • 2006
  • GOCI is the core paryload of the geostationary satellite COMS(Communication, Ocean and Meteological Satellite) for ocean monitoring. It is scheduled to be launched at the end of 2008. GOCI observes ocean color around the Korean Peninsula over $2500km\times2500km$ area. It used tilted two-axis scan mechanism to observe entire field of view. In this work, the pointing stability of the tilted two-axis method is analyzed and compared with that of gimbal method. The analysis results show that tilted two-axis method gives great stability and it is adequate for geostationary payload. The results can also be used to determine and analyze the mechanism specifications.

A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF

Micro-vibration Isolation Performance Verification for the Passive Vibration Isolator using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 수동형 진동절연기의 미소진동 절연성능 검증)

  • Kwon, Sung-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.900-903
    • /
    • 2014
  • Fly-wheel, Gimbal antenna, CMG, Spaceborne cyrocooler generate micro-vibration during their on-orbit operation as well as implementing their own function. To comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required to isolate the micro-vibration derived from such payloads by applying the vibration isolator. In this study, we proposed a passive isolator using SMA mesh washer, which guarantees the structural safety of both micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

Ergonomics-based Design of 7 Degrees of Freedom Motion Capture Device (인간공학기반 7자유도 모션캡쳐 장치 설계)

  • Loh, Byoung Gook;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The design of a 7 degree of freedom motion capture device(MCD) has been presented. The newly designed MCD overcomes the shortcomings of the existing CADEN-7 exoskeleton robot by implementing various ergonomic design. To improve ease of operation, light-weight high-strength materials such as carbon pipes and engineering plastics were used to reduce weight of the MCD and arm-length adjustment mechanism was also added. The MCD showed consistent measurement results in designed experiments involving change of arm posture from nominal configuration to either elbow-side or arm-front configurations. Furthermore, captured motion in more natural tennis swing appeared to agree well with visual observations made.

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

Study of a Leveling Mobile Platform for Take-off and Landing of Unmanned Aerial Vehicles (무인항공기 이착륙을 위한 수평 유지 이동 플랫폼)

  • Lee, Sangwoong;Kawk, Junyoung;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2020
  • Applications for the unmanned aerial vehicle (UAV) have expanded enormously in recent years. Of all its various technologies, the UAV's ability to take off and land in a moving environment is particularly required for military or oceanic usage. In this study, we develop a novel leveling platform that allows the UAV to stably take off and land even on uneven terrains or in moving environments. The leveling platform is composed of an upper pad and a lower mobile base. The upper pad, from which the UAV can take off or land, is designed in the form of a 2 degrees of freedom (DOF) gimbal mechanism that generates the leveling function. The lower mobile base has a four-wheel drive structure that can be operated remotely. We evaluate the developed leveling platform by performing extensive experiments on both the horizontal terrain and the 5-degree ramped terrain, and confirm that the leveling platform successfully maintains the horizontal pose on both terrains. This allows the UAV to stably take off and land in moving environments.

Development of a Lifting Utility with Balance-controlled Platform (작업대 수평유지식 과수원 고소작업차 개발)

  • Jang, Ik-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • Facing the current hikes of labor wage and high oil price, it is needed to have energy-saving machinery which also enables us precise farm operations. Thus, it was necessary to develop a safe machine which allows secure and pleasant works along orchard slopes. In this study, a lifting utility with balance-controlled platform was developed. The platform utility could maintain to level the workbench while driving along slopes. Even the machine body was driven at the tilt angle ranges of ${\pm}20^{\circ}$, the platform bench could be maintained within ${\pm}0.5^{\circ}$ of a gimbal angle. In addition, the machine lifted up to 2.0 m using an electric-hybrid driving mechanism with a low noise. A tandem hybrid power source was developed with a DC 72 V, 100 AH for the Deep-Cycle batteries, charged with 3.5 kW gasoline generator as an auxiliary power source. HST, which is one of the CVT's, was adopted as a transmission device, and a crawer track was used for the safety of the vehicle against tip-over. The maximum lifting height of platform was is 2,500 mm, and the maximum extendable width was 2,900 mm.

Design and analysis of slider and suspension in 4${\times}$l near-field probe array

  • Hong Eo-Jin;Oh Woo-Seok;Jung Min-Su;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Lee Sung-Q;Park Kang-Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.47-52
    • /
    • 2005
  • A lot of information storage devices have been introduced and developed for recently years. The trends of those devices are high capacity, compact size, low power consumption, reliability, and removability for data interchange with other device. As a satisfaction of these trends, near-field technique is in the spotlight as the next generation device. In order for a near-field recording to be successfully implemented in the storage device, a slider and suspension is introduced as actuating mechanism. The optical slider is designed considering near-filed optics. Suspension is not only supports slider performance, and tracking servo capacity but also meets the optical characteristics such as tilt aberration, and guarantee to satisfy shock performances for the mobility fir the actuator. In this study, the optical slider and the suspension for near-field probe array are designed and analyzed considering dynamic performance of head-gimbal assembly and shock simulation..

  • PDF