• Title/Summary/Keyword: Gibb's free energy

Search Result 21, Processing Time 0.025 seconds

Adsorption characteristics of lead ion in aqueous solution by volcanic ash (화산재에 의한 수용액의 납 이온 흡착특성)

  • Kim, Mi-Yeon;So, Myeong-Gi;Kim, Yeong-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Study on Characteristics of the Anaerobic Filter by Nitrate Adding Points (질산화수 주입 방법에 따른 혐기성필터 거동 고찰)

  • Lim, Seung-Joo;Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.57-62
    • /
    • 2007
  • Characteristics of the upflow anaerobic filter process have been studied with six other conditions. When nitrate was mixed with influent in the bottom of the reactor, removal efficiencies of TBOD and TCOD were lower than those of TBOD and TCOD when nitrate was injected to the side of the reactor. In addition, when nitrate was injected to the side of the reactor the concentration of volatile acids of effluent was not high and ORP of effluent was lower than the mixture when nitrate was mingled with influent. It means that the bottom of the anaerobic filter played an important role in making volatile acids, methane production, and denitrification. Moreover, percentage of methane in the gas increased in accordance with increasing nitrate injection. It was because there were a lot of methane producing microorganisms which would rather use hydrogen than acetate. This reactor condition gets unstable due to provide nitrate. Therefore, higher hydrogen Pressure, shorter generation time, and lower standard Gibb's free energy gave great portion of methane of gas.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

A Thermodynamic Investigation into the Stabilization of Poly(dA).[poly(dT)]2 Triple Helical DNA by Various Divalent Metal Ions

  • Choi, Byung-Hoon;Yeo, Ga-Young;Jung, Jin-Ah;Lee, Bae-Wook;Han, Sung-Wook;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2691-2696
    • /
    • 2009
  • Effects of representative group II and transition metal ions on the stability of the $poly(dA){\cdot}[poly(dT)]_2$ triplex were investigated by the van’t Hoff plot constructed from a thermal melting curve. The transition, $poly(dA){\cdot}[poly(dT)]_2\;{\rightarrow}\;poly(dA){\cdot}poly(dT)\;+\;poly(dT)$, was non-spontaneous with a positive Gibb’s free energy, endothermic (${\Delta}H^{\circ}$ > 0), and had a favorable entropy change (${\Delta}S^{\circ}$ > 0), as seen from the negative slope and positive y-intercept in the van’t Hoff plot. Therefore, the transition is driven by entropy change. The $Mg^{2+}$ ion was the most effective at stabilization of the triplex, with the effect decreasing in the order of $Mg^{2+}\;>\;Ca^{2+}\;>\;Sr^{2+}\;>\;Ba^{2+}$. A similar stabilization effect was found for the duplex to single strand transition: $poly(dA){\cdot}poly(dT)\;+\;poly(dT)\;→\;poly(dA)\;+\;2poly(dT)$, with a larger positive free energy. The transition metal ions, namely $Ni_{2+},\;Cu_{2+},\;and\;Zn_{2+}$, did not exhibit any effect on triplex stabilization, while showing little effect on duplex stabilization. The different effects on triplex stabilization between group II metal ions and the transition metal ions may be attributed to their difference in binding to DNA; transition metals are known to coordinate with DNA components, including phosphate groups, while group II metal ions conceivably bind DNA via electrostatic interactions. The $Cd_{2+}$ ion was an exception, effectively stabilizing the triplex and melting temperature of the third strand dissociation was higher than that observed in the presence of $Mg_{2+}$, even though it is in the same group with $Zn_{2+}$. The detailed behavior of the $Cd_{2+}$ ion is currently under investigation.

Effect of Number and Location of Amine Groups on the Thermodynamic Parameters on the Acridine Derivatives to DNA

  • Kwon, Ji Hye;Park, Hee-Jin;Chitrapriya, Nataraj;Han, Sung Wook;Lee, Gil Jun;Lee, Dong Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.810-814
    • /
    • 2013
  • The thermodynamic parameters for the intercalative interaction of structurally related well known intercalators, 9-aminoacridine (9AA) and proflavine (PF) were determined by means of fluorescence quenching study. The fluorescence intensity of 9AA decreased upon intercalation to DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$]. A van't Hoff plot was constructed from the temperature-dependence of slope of the ratio of the fluorophore in the absence and presence of a quencher molecule with respect to the quencher concentration, which is known as a Stern-Volmer plot. Consequently, the thermodynamic parameters, enthalpy and entropy change, for complex formation was calculated from the slope and y-intercept of the van't Hoff plot. The detailed thermodynamic profile has been elucidated the exothermic nature of complex formation. The complex formation of 9AA with DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$] was energetically favorable with a similar negative Gibb's free energy. On the other hand, the entropy change appeared to be unfavorable for 9AA-poly[$d(G-C)_2$] complex formation, which was in contrast to that observed with native DNA and poly[$d(A-T)_2$] cases. The equilibrium constant for the intercalation of PF to poly[$d(G-C)_2$] was larger than that to DNA, and was the largest among sets tested despite the most unfavorable entropy change, which was compensated for by the largest favorable enthalpy. The favorable hydrogen bond contribution to the formation of the complexes was revealed from the analyzed thermodynamic data.

Synthesis of polysulfone beads impregnated with Ca-sepiolite for phosphate removal

  • Hong, Seung-Hee;Lee, Chang-Gu;Jeong, Sanghyun;Park, Seong-Jik
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 ㎛) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 ℃ was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.

Application of Thermal Plasma for Production of Hydrogen and Carbon Black from Direct Decomposition of Hydrocarbon (탄화수소의 직접분해로부터 수소와 카본블랙을 생성하기 위한 열플라즈마의 응용)

  • Lee, Tae-Uk;Nam, Won-Ki;Baeck, Sung-Hyeon;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2007
  • Direct decomposition of hydrocarbon (methane, propane) was studied using a thermal plasma to produce high purity hydrogen and carbon black. Thermodynamic equilibrium compositions were calculated based on the minimization of Gibb's free energy, and decomposition experiments were performed on the basis of calculation results. The purity of hydrogen was found to be depended strongly on the flow rate of hydrocarbon. The decomposition conditions for high purity hydrogen were investigated. The purity of hydrogen produced from methane decomposition was higher than that from propane. In the case of propane, it was investigated that by products such as methane, acetylene, and ethane etc., by radical recombination under thermal plasma were produced more than that of methane. Produced carbon blacks were characterized by material analyses, such as XRD, Raman spectroscopy, SEM, and particle size analysis. In both methane and propane decompositions, well-crystallized carbon blacks were produced and showed uniform and sphere-like morphologies. The size of carbon black synthesized from methane was observed to be smaller than that from propane.

Development of Chiral Stationary Phases for the Gas Chromatographic Separation of Amino Acid Enantiomers New diamide chiral stationary phase (아미노산 광학이성질체 분리를 위한 가스크로마토그라피용 키랄 고정상의 개발 -새로운 diamide계 키랄 고정상의 응용-)

  • Park, Man-Ki;Yang, Jeong-Sun;Lee, Mi-Yung
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • New diamide chiral stationary phases of four systematically substituted optically active N-(N-benzoyl-L-amino acid)-anilide synthesized from L-valine, L-leucine, L-isoleucine, and L-phenylalanine were described. The behaviors of these diamides as optically active stationary phases for the separation of N-trifluoroacetyl-D,L-amino acids were examined with respect to separation factors(${\alpha}$) and thermodynamic properties of interaction. The separation of twelve N-trifluoroacetyl-D,L-amino acid isopropyl esters were improved by the order of N-(N-benzoyl-L-leucyl)-anilide>N-(N-benzoyl-L-isoleucyl)-anilide>N-(N-benzoyl-L-valyl)-anilide>N-(N-benzoyl-L-phenylalanyl)-anilide. Eight amino acid derivatives with non-polar R-group and threonine, serine, aspartic acid, and glutamic acid enantiomers were separated on N-(N-benzoyl-L-leucyl)-anilide as chiral stationary phase with good separation factor between 1.07-1.25. The separation factors decreased with respect to increasing column temperature. Possible working temperature of diamide phase was between $130-190^{\circ}C$ for N-(N-benzoyl-L-phenylalanyl)-anilide and $130-180^{\circ}C$ for other three diamide phases. The differential Gibb's free energy (${\Delta}{\Delta}G$) of enantiomers was in the range of -100--180 cal/mol for ten amino acids and -40--60 cal/mol for alanine and aspartic acid.

  • PDF

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.