• Title/Summary/Keyword: Giant Magellan Telescope

Search Result 57, Processing Time 0.05 seconds

Giant Magellan Telescope Fast Steering Mirror Prototype의 반사경 Cell 초기설계 및 해석

  • Park, Gwi-Jong;Kim, Yeong-Su;Jo, Myeong-Gyu;Kim, Ho-Sang;Go, Ju-Heon;Jang, Jeong-Gyun;Park, Byeong-Gon;Gyeong, Jae-Man;Cheon, Mu-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.3-30.3
    • /
    • 2011
  • 한국천문연구원은 Giant Magellan Telescope Fast Steering Mirror prototype을 개발 중이고, 반사경 제작과 tip-tilt 시스템 제작을 목표로 하고 있다. 반사경은 직경이 1.06m, 두께가 약 140mm, 질량이 약 100kg인 meniscus 타입인 비축 비구면 반사경이다. Tip-tilt 시스템은 바람에 의한 반사경의 진동과 망원경의 tracking jitter를 보정하기 위한 장치로써 tip-tilt 각도가 ${\pm}20"$ 범위 내에서 약 30Hz로 작동하는 시스템이다. 반사경 cell은 반사경 뒷면에 조립되어 반사경 cell 내부에 주입되는 진공과 함께 반사경의 무게를 지지하고, tip-tilt 시스템을 작동시키는 액츄에이터가 장착되는 base structure 역할을 한다. 이 논문에서는 반사경 cell의 초기설계와 반사경 cell에 발생할 수 있는 하중 조건에 따른 응력과 변위, 반사경 cell의 두께에 따른 고유진동수를 해석한 결과들에 대해 논한다.

  • PDF

Software Modeling for Flexure Compensation System (FCS) prototype of the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

  • Ji, Tae-Geun;Cook, Erika;Lee, Hye-In;Depoy, Darren L.;Marshall, Jennifer;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.56.3-56.3
    • /
    • 2018
  • We proceed to develop the control software of GMACS, which is a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). Flexure Compensation System (FCS) prototype is one of the electronics and mechanical prototypes for GMACS. In this poster, we present the software design for the FCS prototype by using the software system modeling language, SysML. We also show two development tools to control the prototype that communicates via EtherCAT: using TwinCAT and Visual C++ on Windows 10, and GMT Software Development Kit (SDK) and C++ on Linux. We discuss the way to design the GMACS control software, which would not depend on the development tools.

  • PDF

Next generation spectroscopic facilities: GMACS for the Giant Magellan Telescope and the Maunakea Spectroscopic Explorer

  • Marshall, Jennifer
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2019
  • The next decade will see great advances in ground-based spectroscopic observing capabilities: facilities that are under development today will have larger collecting areas and greater spectroscopic multiplexing capabilities than ever before, and are sure to revolutionize the scientific productivity of our field. In this talk I will review the status of two of these next-generation facilities, the Giant Magellan Telescope's wide-field multiobject optical spectrograph, GMACS, and the Maunakea Spectroscopic Explorer project, a massively multiplexed spectroscopic facility currently under development in Hawaii that features an 11.25m diameter primary mirror which feeds 4,332 fibers and a suite of low- and high-resolution spectrographs. These two projects are scientifically quite complementary and both present exciting instrument development opportunities over the next few years.

  • PDF

Design of control software for GMACS (Giant Magellan Telescope Multi-Object Astronomical and Cosmological Spectrograph)

  • Lee, Hye-In;Ji, Tae-Geun;Pak, Soojong;Cook, Erika;Froning, Cynthia;Schmidt, Luke M.;Marshall, Jennifer L.;DePoy, Darren L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.79.3-79.3
    • /
    • 2019
  • GMACS is one of the first light instruments for the Giant Magellan Telescope (GMT). The development of GMACS control software follows Agile software development process, and the design of the software is based on the Unified Model Language (UML). In this poster, we present the architecture of the GMACS software and the development processes. As an example of the software development, we show the software of the Slit Mask Exchange Mechanism Prototype (SMEM-P) which is part of the GMACS Device Control Package (DCP).

  • PDF

Development Process on the Control Software for Camera and Grating Articulation System Prototype (CGAS-P) of the Giant Magellan Telescope Multi-Object Astronomical and cosmological Spectrograph (GMACS)

  • Ji, Tae-Geun;Cook, Erika;Kelly, Evan;DePoy, Darren L.;Marshall, Jennifer;Lee, Hye-In;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2019
  • We present the control software and its development process for a prototype of the Camera and Grating Articulation System (CGAS) for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). The CGAS prototype is currently designed for the camera articulation controller as a miniature model of the GMACS. The camera articulation package (CAP) is a software that controls two stepper motors to adjust the camera angle. The package is developed using Visual C++ and runs on Windows 10. We discuss the architectural design and communication route between the high-end user software and the electronics hardware.

  • PDF

Development Process for Slit Mask Exchanger Mechanism Prototype (SMEM-P) of the Giant Magellan Telescope Multi-object Astronomical and cosmological Spectrograph (GMACS)

  • Lee, Hye-In;Cook, Erika;Ji, Tae-Geun;Byeon, Seoyeon;Pak, Suehee;Cynthia, Froning;Marshall, Jennifer;Depoy, Darren L.;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.68.4-69
    • /
    • 2018
  • GMACS is one of the instruments for the Giant Magellan Telescope (GMT) which will provide wide field, multi-object, moderate resolution spectroscopy of faint targets. KHU (Kyung Hee University) is in charge of control software of GMACS. As a first step, the Slit Mask Exchange Mechanism Prototype (SMEM-P) will be used as a preliminary example to make development process between electronics and high level software. Recently, we have developed a sample program to communicate with low level devices via EtherCAT. It is expected to be a mockup design for software and control system of GMACS. In this poster, we show the development process and test operation results of control software for SMEM-P.

  • PDF

Accuracy Assessment for Measuring Surface Figures of Large Aspheric Mirrors

  • Kim, Young-Soo;Ahn, Ki-Beom;Park, Kwi-Jong;Moon, Il-Kweon;Yang, Ho-Soon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.178-183
    • /
    • 2009
  • At the time that the Keck-I 10m telescope was constructed in 1993, the era of Very Large Telescopes (VLTs) was opened. Now thirteen VLTs are in operation, and the largest of the monolithic mirrors is 8.4 m in diameter. Such monolithic mirrors are mostly aspheric and require high accuracies on the surface figures, reaching up to the diffraction limit. At present, next generation telescopes, Giant telescopes, are being developed. One is the GMT (Giant Magellan Telescope) whose size is 25.4 m in diameter. The primary mirror consists of seven segments figuring elliptical shapes on the surface. The surrounding six segments are off-axis and the edges are steep, as the fast focal ratio is adopted. It means that testing of the mirrors is a challenging task. In this paper, testing methods for the GMT primary mirror are reviewed, and accuracy of measuring devices is assessed. Results and discussions follow.