• 제목/요약/키워드: Geumho River

검색결과 80건 처리시간 0.019초

금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구 (Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study)

  • 김재철;이지호;유철상;김상단
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석 (Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System)

  • 정강영;안정민;이경락;이인정;유재정;천세억;김교식;한건연
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

유출변화(流出変化)에 의한 배수현상(背水現象) 해석(解析) (Backwater Computation in River Channel by the Runoff-Frequency)

  • 서승덕;석기홍
    • Current Research on Agriculture and Life Sciences
    • /
    • 제2권
    • /
    • pp.77-90
    • /
    • 1984
  • Results investigated backwater phenomena at Geumho river basin to get a basic data for Daegu basin area development plan are as the follows. 1. It is a A=0.35 L 1.848 (r = 0.97), the relationship between basin area and river length at Geumho river. 2. Dividing the rainfall of Geumho river basin as two parts, a first half rainfall and a second half rainfall, the amount of a first half rainfall appeared 57.5% comparison with total rainfall. 3. The maximum flood discharge appeared 12 hrs. continuous rainfall rather than 24 hrs. continuous rainfall. 4. Results investigated backwater phenomena from Geumho II bridge to chungchun appeared the rising water level of 69 cm, 55 cm, 44 cm, at section III in the starting point water level of 1.8 m, 2.4 m, 4.0 m respectively. 5. Results investigated backwater phenomena by the flood water level appeared a similar form. There was a average rising water level of 30 cm at section III. At the results of this computation, it was confirmed that section III was affected the highest backwater phenomena among the observed river reaches in Geumho river. In addition, this paper should be given a assistance to decide a economic and safe section in construction of bank of river and estuary barrage.

  • PDF

대구 신천과 금호강 일대의 문화지형 발굴과 스토리텔링 구성 (The Excavation and Making Storytelling of Cultural Landforms around Shincheon (stream), Guemho River in Daegu)

  • 전영권
    • 한국지형학회지
    • /
    • 제17권3호
    • /
    • pp.17-30
    • /
    • 2010
  • 대구를 대표하는 하천인 신천과 금호강에 발달하는 문화지형을 발굴하여 이야기 꺼리를 구성하였고 그것의 활용방안에 대해 다음과 같이 요약하였다. 1) 신천에서 볼 수 있는 대표적인 문화지형으로는 용두바위(하식애), 하식애, 바위그늘(암음), 판상절리지형, 하식동, 토르 등이다. 2) 금호강변에 발달하는 대표적인 문화지형으로는 습지, 나루터, 포인트바, 하식애, 화담(소), 동화천, 무태, 침산, 연암산, 상화대(하식애) 등이다. 3) 신천변과 금호강변에 발달하는 문화지형의 보존을 위해서는 방치되어 있는 문화지형의 발굴과 복원이 절실하며, 가치 있는 문화지형은 문화재로 지정하여 멸실이나 훼손으로부터 보호할 필요가 있다. 4) 활용방안의 경우 신천에서는 문화, 역사, 생태환경 체험을 위한 자연관찰학습장 조성이 필요하다. 금호강의 경우 '대구 금호강 문화지형 탐방로'를 조성하여 탐방객 스스로 찾아갈 수 있도록 하는 '자기주도형 탐방(self-guided tour)' 방식을 도입하는 것이 효과적이다.

Evaluation of the tributaries by influence index on the mid-lower portion of the Nakdong River basin

  • Lee, Shun-Hwa;Jung, Seung-Gyu;Park, Seoung-Muk;Lee, Byung-Dae
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.150-158
    • /
    • 2018
  • The deteriorating role of Nakdong River due to the Four Major Rivers Project has caused a series of problems, including water pollution, drying streams, aggravation of the hydroecology. Geumho River and Gyeongseong-cheon had a higher concentration index and is believed to impact the water quality of the main stream. The influence index of Geumho River and Nam River between 2015 and 2016, which have a large amount of discharge, was the highest among the tributaries in terms of the load material balance. Showing the highest average concentration and average load in the index assessment, Geumho River is believed to require an intensive management for improving the water quality of the main stream. Furthermore, when the cumulative percentage of the average concentration and average load was compared based on the water quality improvement of the tributaries mixed to Nakdong River, which was set to 60%, Geumho River, Nam River, Topyeong-cheon, and Cha-cheon, which showed the highest ratio in that order, were determined to require a water quality management program as a priority.

An Analysis of Long-term Changes in Water Quality of Geumho River using Statistical Techniques

  • Jung, Kang-Young;Cho, Sohyun;Ha, Don-woo;Kang, Tae-woo;Lee, Yeong Jae;Han, Kun-Yeun;Kim, Kyunghyun
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.883-899
    • /
    • 2018
  • In this study, water quality data of eight main sites in the Geumho River watershed were collected and analyzed for long-term changes in water quality over the period from 2005 to 2015. The results showed that BOD concentration was gradually improved by the Total Maximum Daily Load (TMDL), stages 1 and 2. Recently, a tendency of increasing BOD concentration was observed in the downstream section of the river. The concentration of COD was analyzed to be contaminated throughout the water system regardless of the water quality improvement project, and the TN concentration tended to increase in the midstream of the river from 2013. The TP concentration has clearly decreased from 2012 after the second stage of TMDL. For the statistical analysis of PCA ordination, monthly water qualities (pH, DO, Electrical Conductivity (EC), Water Temperature (WT), BOD, COD, TN, TP, TOC, and SS) and flow rate data for 5 years from 2012 to 2016 were used. Seasonally the Geumho River showed an increase in the TN concentration at point sources during the dry season (December to February). TP showed the effect of non-point sources in the summer, because rainfall has caused a rise in flow rate in the upstream. Besides, the origin of pollution source was changed from non-point sources with BOD, COD, and TOC.

계절 맨-켄달 기법을 이용한 금호강 본류 BOD의 장기 경향 분석 및 탐색적 자료 분석 (Long-Term Trend Analysis and Exploratory Data Analysis of Geumho River based on Seasonal Mann-Kendall Test)

  • 정강영;이인정;이경락;천세억;홍준영;안정민
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.217-229
    • /
    • 2016
  • The government has conducted a plan of total maximum daily loads(TMDL), which divides with unit watershed, for management of stable water quality target by setting the permitted total amount of the pollutant. In this study, BOD concentration trends over the last 10 years from 2005 to 2014 were analyzed in the Geumho river. Improvement effect of water quality throughout the implementation period of TMDL was evaluated using the seasonal Mann-Kendall test and a LOWESS(locally weighted scatter plot smoother) smooth. As a study result of the seasonal Mann-Kendall test and the LOWESS smooth, BOD concentration in the Geumho river appeared to have been reduced or held at a constant. As a result of quantitatively analysis for BOD concentration with exploratory data analysis(EDA), the mean and the median of BOD concentration appeared in the order of GH8 > GH7 > GH6 > GH5 > GH4 > GH3 > GH2 > GH1. The monthly average concentration of BOD appeared in the order of Apr > Mar > Feb >May > Jun > Jul > Jan > Aug > Sep > Dec > Nov > Oct. As a result of the outlier, its value was the most frequent in February, which is estimated 1.5 times more than July, and was smallest frequent in July. The outlier in terms of water quality management is necessary in order to establish a management plan for the contaminants in watershed.

금호강의 상.하류간 이.화학적 수질구배 및 이에 따른 어류 길드영향 (Physico-chemical Water Quality Gradients Along the Main Axis of the Headwater-to-Downstream of Geumho River and Their Influences on Fish Guilds)

  • 김용휘;한정호;안광국
    • 한국물환경학회지
    • /
    • 제28권4호
    • /
    • pp.561-573
    • /
    • 2012
  • The object of this study was to analyze long-term water quality gradients during 1992-2008 at six sites of Geumho River and near-by two sites of Nakdong River and their influences on fish trophic guilds and tolerance guilds along with ecological health. Water quality including biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) varied largely depending on the sampling locations and seasons. Values of ambient BOD, COD, TP, and TN were greater in the downstream than in the upstream reach, and seasonal and interannual variabilities were also higher in the downstreams. This phenomenon was evident due to a dilution by the Asian monsoon rainfall during the monsoon. These outcomes indicate that point sources near the downstream are important for the chemical conditions, but also seasonal stream runoff was considered as an important factor regulating the chemical conditions. Conductivity decreased rapidly during the summer due to ionic dilution, and nutrients (N, P), BOD, COD had an inverse function of seasonal precipitation. Based on the water quality, we selected two sites (control site = $C_s$ vs. impacted site = $I_s$) for impact analysis of water chemistry on fish community and trophic/tolerant guilds. Fish guild analysis showed that species diversity was higher in the headwater stream ($C_s$) than the impacted downstream ($I_s$), and that the proportion of tolerant and omnivore species were greater in the impacted site of downstream. Comparisons of water quality between Geumho River and Nakdong River indicated that Geumho River was considered as a point source which degradated water quality to the Nakdong River. Overall, chemical water quality and fish guild analysis suggest that even if current chemical quality got better after 1996 due to continuous constructions of wastewater disposal plants near the downstreams, fish compositions of tolerant and omnivores were still dominated the community. Thus, biological restoration based on ecological health is required for the ecosystem conservation.

금호강 수질특성 및 유량확보에 따른 수질개선 효과 분석 (Analysis of Water Quality Improvement Effect by Securing Water Quality Characteristics and Flow Rate in the Geumho River)

  • 곽인수;최보람;전혜린;김선애;배재형;김신;김정민
    • 환경영향평가
    • /
    • 제29권6호
    • /
    • pp.414-429
    • /
    • 2020
  • 하천의 관리를 위하여 수질오염총량 및 물환경기본계획을 수립하여 목표수질을 설정하고 있으며 금호강의 경우 T-P는 목표수질을 달성하고 있으나 BOD, COD, TOC의 경우 지난 5년간 물환경기본계획 목표수질을 초과하였다. 이에 금호강을 대상으로 BOD, COD, TOC를 이용하여 유달부하량 및 유달부하밀도, 오염기여율을 분석하고 수질오염총량관리에서 사용하고 있는 1차원 수질모델인 QUAL-MEV를 활용하여 목표수질 만족을 위한 필요유량을 모의하였다. 유달부하량을 분석한 결과 금호C 지점에서 BOD, COD, TOC 모두 9,832.2 kg/day, 20,656.6 kg/day, 15,545.1 kg/day로 가장 높게 나타났으며, 유달부하밀도는 강우기 및 비강우기에 달서천에서 9.47 kg/day/㎢, 37.55 kg/day/㎢, 30.20 kg/day/㎢과 17.19 kg/day/㎢, 47.59 kg/day/㎢, 39.14 kg/day/㎢로 가장 높게 나타났다. 오염기여율은 강우기에 팔거천이 약 25%, 비강우기에 달서천이 모든 항목에서 약 50%로 가장 높게 나타났다. 또한 금호강본류 및 지류 유기물질간의 상관관계 분석을 수행한 결과 비강우기, 강우기 모두 COD-TOC가 0.8 이상으로 BOD-COD, BOD-TOC보다 상관관계가 높게 나타났다. 그리고 금호C 지점에서 수질오염총량 및 물환경기본계획 목표수질을 만족하기 위한 유량을 조사한 결과 2019년 4월(3.46 ㎥/sec)을 기준으로 약 14배, 22배의 추가유량이 필요한 것으로 분석되었다.

LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성 (Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea)

  • 은코모제피 템바;정상옥
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.55-63
    • /
    • 2013
  • This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.