• Title/Summary/Keyword: Geum-River water quality

Search Result 157, Processing Time 0.025 seconds

Necessity for Expansion of Total Phosphorus Management in the Geum River Watershed (금강수계에서 총인관리의 확대 필요성)

  • Park, Jae Hong;Lee, Jae Kwan;Oh, Seung Young;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • Total phosphorus was set as a target indicator to prevent eutrophication and algae growth, etc., in three major rivers (Nakdong River, Geum River and Yeongsang/Seomjin River) for the second phase (2011 ~ 2015) in total maximum daily loads (TMDLs) system. However, total phosphorus management was restrictively introduced, i.e., upstream of the Lake Daechung, in the Geum River watershed. Total phosphorus concentration and trophic levels in downstream of the Lake Daechung (include Mangyeong and Dongjin rivers) were increased more than upstream. Therefore, it is necessary to expand total phosphorus management in all watersheds of the Geum River. If total phosphorus was managed in all area of the Geum River watershed, it is possible to decrease total phosphorus concentration and trophic levels, and solve the unbalanced water quality between up and downstream of the Lake Daechung.

Serial Use of Hydrodynamic and Water Quality Model of the Geum River using EFDC-Hydro and WASP7.2 (EFDC-Hydro와 WASP7.2 를 이용한 금강하류의 수리-수질 연계 모델링)

  • Seo, Dongil;Seo, MiJin;Koo, Myungseo;Woo, Jaekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • This study reports the serial use of a 3-D hydrodynamic model, EFDC-Hydro and a dynamic water quality model WASP7.2 that are maintained by USEPA. The 48 km section of the Geum River downstream between Daechung Dam and Gongju was selected as a sample study site. Topographical information was used to accurately represent morphology of the study site and boundary conditions were derived from governmental databases including WAMIS by Ministry of Land and Ocean and WEIS by Ministry of Environment. EFDC-Hydro was successfully calibrated for observed water level and WASP was calibrated using monthly observed water quality data obtained from the above sources. It was found that the current water quality target of BOD for the Geum River-H point could not be met on monthly basis though every other tributary of the area would meet its own water quality target as assigned in Korean TMDL. This study proposed the new target BOD water quality for the Gabcheon and Mihocheon as 4.3 and 3.6 mg/l, respectively so that the Geum River-H point can meet the target. When Sejong City is constructed, it is estimated that effluent discharge limit of BOD must be less than 4.5 mg/l to meet water quality of the point. This study shows that it is possible to carry out more precise modeling considering both water movement and water kinetics by using EFDC and WASP simultaneously.

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Contamination Sources of Several Potentially Hazardous Compounds Found at the Gap Stream and the Miho Stream, Two Major Tributaries of the Geum River (금강 수계 주요지류인 갑천과 미호천에서 잠정유해물질 오염원 확인 연구)

  • Lee, Jun-Bae;Lee, Jay-Jung;Cho, Yoon-Hae;Yoon, Jo-Hee;Hong, Seoun-Hwa;Lee, Dae-Hee;Lee, Dae-Hee;Cho, Young-Hwan;Shin, Ho-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • BACKGROUND: Water quality is of concern to water utility operators, public health officials, and populations using the water. If any contaminant is released from a point of entry, it could be spread rapidly throughout the water stream. So the identification of the location of the points of entry and its release history are critical informations to establish the management strategy.METHODS AND RESULTS: Aniline, nonylphenol, pentachlorophenol and formaldehyde in 39 surface water samples were analysed using Gas chromatography-mass spectrometry (GC-MS) methods. Formaldehyde, aniline and nonylphenol were mainly detected in the near sites where industrial waste water and domestic sewage were discharged into stream. But pentachlorophenol was detected in the downstream samples where pulp manufacturing plants were operated.CONCLUSION: Results indicate that pentachlorophenol found in main stream of Guem river was mainly introduced from pulp manufacture industries. Otherwise, formaldehyde, aniline and nonylphenol were mainly contaminated from the industrial waste water and domestic sewage.

A Study on the Water Quality Simulation in the Midstream and Downstream of Geum-River (금강 중하류에서의 수질모의에 관한 연구)

  • Sin, Jae-Gi;Im, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.145-157
    • /
    • 2000
  • The Water Quality Analysis Simulation Program 5 (WASP5) and HEC-2 models have been coupled and applied to find the possibility of simulation of long-term river water quality variation. The EUTR05 as a simulator of water quality simulation in WASPS model was used to simulate the water quality variables in the downstream of Geum-River from Daechung multi-purpose dam during the dry period. The water quality and flow rate conditions have been measured at the stage measurement stations located in the downstream of Geum-River from Daechung dam in December, 1998 and January and March, 1999. The water quality simulation model was calibrated with January data of 1999, and verified with December data of 1998 and March data of 1999. The trend of longitudinal variation of water quality variables simulated by model is consistent with that of measured water quality constituents except chlorophyll-a, $BOD_5,\;NH_3-N\;and\;PO_4-P$ simulated with March data of 1999. Furthennore, the chlorophyll a concentration in the mainstream of Geum-River was simulated by changing the concentrations of $PO_4-P$ and/or $NH_4-N$ flowing into the mainstream of Geum-River from Gabcheon and Mihocheon. The variation of chlorophyll a concentration in the mainstream was almost ignorable except only when $NH_3-N\;and\;PO_4-P$ concentrations decreased by 70% flow into the mainstream from Gabcheon and Mihocheon.

  • PDF

Monitoring of Indicator Microorganism Concentrations of River Sediment and Surface Water in the Geum River Basin (금강 수계 내 하천퇴적물 및 지표수의 지표미생물 농도분포)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Characterization of sediment quality is important for the proper management of surface water quality, yet sediment has not been monitored sufficiently. In this study, fecal indicator microorganism concentrations of sediments in the Geum River Basin were monitored. Sampling was carried out at one paddy field, one lakeshore and five monitoring stations in the lower reach of the Geum River Basin. Surface waters and sediments were sampled four times during rainy season. Total coliform concentrations of sediments were 12 times higher in average to those of surface waters while E. coli concentrations of sediments were six times higher. No correlation found between indicator microorganism concentration between surface waters and sediments.

Relationship among Inflow Volume, Water Quality and Algal Growth in the Daecheong Lake (대청호 유입유량 변동과 수질 및 조류증식의 관계)

  • Cheon, Se-Uk;Lee, Jea-An;Lee, Jay J.;Yoo, Yung-Bok;Bang, Kyu-Chul;Lee, Yeoul-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.342-348
    • /
    • 2006
  • Changes in water quality and algal growth according to the differences in the inflow volume were investigated in the Daecheong Lake from 1998 to 2001. Until year 2000, inflow volume considerably depended on the rainfall throughout the basin. However, the correlation was low since 2001 when water storage in the upstream Yongdam Lake was started. According to inflow volume-TP relationship analyses, significant correlation was found at up- and middle-stream sites, excluding down-stream site of the Daechong Lake. For chlorophyll-a, correlation was found with flow volume at all sites except for Choo-So. In a dry year, although nutrients loads were relatively lower than those in rainy years, there were higher concentrations of chlorophyll-a and massive bloom of Microcystis. Limiting factors for algal growth seems to be not the volume of nutrients load but retention time and physical disturbance of the water body influenced by inflow volume. Thus, in the Daecheong lake, it would be more important to focus on the management of eutrophication in dry years than in rainy ones.

Water Quality Properties of Tributaries of Daechung Lake, Korea (대청호 유입지천의 수질 특성)

  • Shim, Moo Joon;Yoon, Jae Yong;Lee, Soo Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.12-25
    • /
    • 2015
  • The tributaries of Daechung Lake play an important role in controlling eutrophication in the lake, which is used for agricultural purposes and as potable water. However, water quality properties were not extensively studied in the tributaries of Daechung Lake. The objectives of this study are to investigate spatial and temporal properties of water quality and to characterize streams which could threaten water quality of Daechung Lake. For this study, water samples were weekly or monthly collected from February 2014 to October 2014 in 9 streams. Water quality parameters analyzed in this study include biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen and phosphorus (TN and TP), suspended solids (SS), and chlorophyll a. Based on temporal distribution and principal component analysis, BOD, COD, TOC, SS, and TP were controlled by not only river discharge that increased during summer due to heavy rain fall, but also due to anthropogenic input (e.g., bridge construction and/or agricultural activity). Dilution is also one of the factors explaining TN and conductivity, both of which decreased with increased discharge. Generally, concentrations of contaminants (BOD, COD, TOC, TN and TP) in the tributaries were higher than those of Daechung Lake. However, pollution load indicated that only the main channel of Geum River and Sook Stream may largely influence lake waters, attributed mostly to their large volumes. This implies that the main channel and Sook Stream are the major influences on the water quality of Daechung Lake.

Assessment of Water Quality in the Miho Stream Using Multivariate Statistics (다변량 통계기법을 이용한 미호천 본류 수질특성 평가)

  • Yoon, Hyeyoung;Kim, Jeehyun;Chae, Minhee;Cho, Yoonhae;Cheon, Seuk
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.373-386
    • /
    • 2019
  • In The study, is to investigate the spatial characteristics of the Miho stream, which is the main tributary of the Geum River system, and to identify the main factors influencing the water quality using water quality analysis and multivariate analysis. The survey subjects were selected as 7 main sites in the Miho stream water system, From 2012 to 2017, 16 items including weather temperature and weather data were used for multivariate analysis. As a result of the water quality analysis, the average concentration of BOD and COD for 6 years was 3grade (normal) compared with the water quality environmental standard (river) of conditions. The concentrations of nitrogen and phosphorus were highest at th upstream site, then decreased and then increased again by the hydrogeological and geomorphological effect. Cluster analysis of spatial and water quality characteristics, it was evaluated as three clusters and the pollution sources is the greatest impact. As a result of principal component analysis and factor analysis on each cluster and mainstream, three to four major components were extracted. Main stream and the Cluster 1, Cluster 3 first principal factor included nitrogen and seasonal factors,first factor of Cluster 2 included nitrogen and water temperature. Nitrogen is the principal factor which affects water quality in Miho stream.

Estimation of Soil Loss by Land Use in the Geum River Basin using RUSLE Model (RUSLE 모델을 이용한 금강 유역의 토지 이용별 토사유출량 추정)

  • Park, Jisang;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.619-625
    • /
    • 2006
  • Amount of soil loss is important information for the proper water quality management, In this research, annual average soil loss of the Geum River basin was estimated using RUSLE (Revised Universal Soil Loss Equation) and GIS (Geographic Information System). Input data were manipulated using ArcGIS ver. 8.3. From crop field which constitute 8.2% of the Geum River Basin, annual average soil loss was estimated as 53.6 ton/ha/year. From the rice paddy field which constitutes 20% of the Geum River Basin, soil loss was estimated as 33.5 ton/ha/year, In comparison, forestry area which constitutes 61.8% of the basin discharged 2.8 ton/ha/year, It could be known from this research that appropriate measures should be implemented to prevent excessive soil loss from the agricultural areas.