• Title/Summary/Keyword: Getters

Search Result 18, Processing Time 0.025 seconds

Alkali & Alkaline-Earth Metal Sources for OLED Devices

  • Tominetti, S.;Cattaneo, L.;Longoni, G.;Bonucci, A.;Toia, L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1763-1768
    • /
    • 2006
  • Low work function alkali metals and alkaline earths successfully lower the electron injection barrier and increase electron injection into the organic layer in OLED displays, but their implementation is not easy. AlkaMax technology can ensure the required metal evaporation rate in a fast, homogeneous and easily controllable way.

  • PDF

Dispensable Dryer Solutions for OLED displays

  • Tominetti, Stefano;Bonucci, Antonio;Vacca, Paolo;Macchi, Roberto;Toia, Luca
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1144-1147
    • /
    • 2009
  • SAES has developed a range of dispensable dryer solutions, based on different technologies and materials. Among these, DryPaste, a thermally curable and screen printable solution, AqvaDry, a transparent solution which maintains its transparency even after water sorption, and ZeoGlue, an edge sealant with active barrier properties

  • PDF

Alkali Metal Sources for OLED devices

  • Cattaneo, L.;Longoni, G.;Bonucci, A.;Tominetti, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.975-978
    • /
    • 2005
  • Electron injection in OLED organic layers is improved by using alkali metals as cathode layer or as dopants inside organic layers. An innovative alkali metal dispensing technology has been developed to overcome handling problems and to ensure controlled and reliable alkali metal layers for OLED.

  • PDF

High control Alkali & Alkaline-earth Metal Sources for OLED devices

  • Bonucci, Antonio;Bertolo, Johnny Mio;Riva, Mauro;Carretti, Corrado;Tominetti, Stefano;Kim, Sung-Hyun;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.332-335
    • /
    • 2007
  • Electron injection improvement in OLED organic layers can be obtained by their doping or using alkaline-earth or alkali metals as electron injection layers (EIL). Common handling problems can be solved by an innovative metal dispensing technology to ensure controlled and reliable metal layers for OLED. Thickness and deposition rate of EIL during the process have been explored to optimize device performances.

  • PDF

Optimization of MgO secondary electron emission in plasma displays, by the adoption of a suitable getter configuration;Part I: MgO degradation studies

  • Riva, Mauro;Bonucci, Antonio;Carretti, Corrado;Han, Yong-Gyu;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.220-223
    • /
    • 2007
  • The key role of MgO is well recognized in PDP's technology. During manufacturing, significant contamination of the oxide occurs. Getters can compete against the impurities sorption speed of the oxide layer. The analysis of the impact of a suitable getter configuration on the operational parameters of PDP's is the final goal of this study.

  • PDF

Individual role of manufacturing steps in PDP system contamination and their specific impact on ultimate operational parameters

  • Riva, Mauro;Bonucci, Antonio;Tominetti, Stefano;Carretti, Corrado;Han, Yong-Gyu;Hong, Sung-Hee;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1448-1451
    • /
    • 2008
  • In this paper we investigate, on the basis of experimental data, the correlations between contamination issues occurring during production process steps and final PDP operational parameters: these reciprocal relations are the result of dynamic equilibria established within the PDP system, amongst residual gases and sorbed species interacting with heat, ions and photons.

  • PDF

Development of thin film getters for field emission display

  • Yoon, Young-Joon;Kim, Kyoung chan;Baik, Hong-Koo;Lee, Sung-Man
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.74-78
    • /
    • 1999
  • For a high efficient field emission display (FED), the specific vacuum conditions below 10-7 Torr should be required. However, because the FED has the geometrical restriction due to its micro size, the thin film getters can be proposed for chemical pumping as a way to reduce impurity gases in the panel. The thin film getters, developed by employing the coating of new materials such as NI or Pt on getter surface, can be used without any activation process and show the enhanced sorption characteristics. Especially, using the Zr (1${\mu}{\textrm}{m}$) thin film getters with the Pt surface layer, the significant gettering for various active gases could be achieved from 9$\times$10-5 Torr to 1$\times$10-6 Torr or below. this good sorption properties is mainly contributed to the surface coating layer which shows the catalytic effect for gas dissociation and protects the getter materials against oxidation.

  • PDF

Stainless-steel sxtreme high vacuum system with a new combination pump (새로운 조합 펌프를 사용한 스테인레스 스틸 극고진공 시스템)

  • 전인규;조복래;정석민
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • We have developed an extreme high vacuum (XHV) system using a new combination pump cpmposed of a suitably shaped NEG(Non-Evaporable Getters) in the body of a sputter-ion pump (SIP). The stainless-steel test chamber was used which had been well oxidized at $450^{\circ}C$ and already yielded XHV with a turbomolecular pumping system. The pressure was measured by a Leybold extractor gauge (EXG,limit:1~$2{\times}10^{-12}$torr, but in the ultimate pressure regionthe EXG shows an unusual sign as $-0.{\times}10^{-12}$ torr which indicates much lower pressure range than its available lower limit. These results are mainly due to the high pumping speed of NEG for hydrogen. Furthermore, use of the SIP combined with the NEG as a XHV pumping system implies the potential for actualization of the surface analysis under XHV environment, and allows one to have a chance tp meet a new world in nanometer science and technology.

  • PDF