• Title/Summary/Keyword: Germole

Search Result 3, Processing Time 0.037 seconds

13C NMR-Study of 1,1-Dipotassio-2,3,4,5-Tetraphenyl-1-Silacyclopentadienide Dianion [SiC4Ph4] 2-·2[K+ ] and 1,1-Dipotassio-2,3,4,5-Tetraphenyl-1- Germacyclopentadienide Dianion [GeC4Ph4] 2-·2[K+ ]

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2017
  • The chemical shifts in the $^{13}C$ NMR spectra of 2,3,4,5-tetraphenyl-1-silacyclopentdienide dianion $[SiC_4Ph_4]^{2-}{\cdot}2[K^+]$ (3) and 2,3,4,5-tetraphenyl-1-germacyclopentdienide dianion $[GeC_4Ph_4]^{2-}{\cdot}2[K^+]$ (4) were compared to those of $[SiC_4Ph_4]^{2-}{\cdot}2[Li^+]$ (5), $[SiC_4Ph_4]^{2-}{\cdot}2[Na^+]$ (6), and $[GeC_4Ph_4]^{2-}{\cdot}2[Li^+]$ (7). The average polarizations in two phenyl groups of two potassium salts are decreased over 15% to 20% comparing to those of the lithium salts and sodium salt {$[EC_4Ph_4]^{2-}{\cdot}2[M^+]$ (E=Si, Ge, M=Li, Na) due to the effect of the counter potassium cation.

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Pak, Youngshang;Ko, Young Chun;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4161-4164
    • /
    • 2012
  • Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.