• Title/Summary/Keyword: Germinal vesicle

Search Result 162, Processing Time 0.023 seconds

Influence of the Substrate and Inhibitors Related to Phosphatidylinositol Metabolism in the Maturation Processes of Porcine Oocytes (돼지 난모세포의 성숙과정에서 Phosphatidylinositol 대사의 기질 및 억제인자의 영향)

  • 강승률;양보석;조인철;이성수;정진관
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • We evaluated the effects of the substrate and inhibitors related to phosphatidylinositol metabolism on in vitro maturation and fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured in mTLP-PVA medium supplemented with or without inositol (250 mM) fur 46h. Subsequently, these oocytes were inseminated with fresh boar semen in mTALP-PVA medium for 6h. At 6h after insemination, oocytes were cultured for further 12 h in TCM-199 supplemented with 10% FBS (fetal bovine serum). The higher percentage of oocytes in inositol-supplemented medium reached metaphase of the second meiotic division compared to those in control (81.4% vs. 67.3%; P<0.()5). following 18 h of insemination, more number of male pronuclei were formed in the oocytes matured in inositol-supplemented medium than in those of control experiment (42.0% vs. 27.3%; P<0.05). When oocytes were cultured in medium with 10mM LiCl (chloride lithium) or 0.5mM dbcAMP (dibutyryl cyclic adenosine monophosphate) to determine the role of inositol on the maturation of oocytes, these two drugs inhibited the meiotic division of oocytes (P<0.05). However, addition of inositol to the culture medium did overcome the inhibitory effect of these drugs on the oocyte maturation. DbcAMP and verapamil supplemented synergistically arrested the meiotic division of oocytes. Addition of verapamil did not inhibit germinal vesicle breakdown, but it severly inhibited the second meiotic division of oocytes. These results suggest that inositol exert its improving effects on maturation, by activating the PI (phosphatidylinositol) cycle and causing beneficial changes in both cytoplasm and membrane of oocytes.

  • PDF

Effects of Steroid Hormones on $In$ $Vitro$ GVBD and Oocyte Steroidogenesis in Blacktip Grouper, $Epinephelus$ $fasciatus$

  • Hwang, In-Joon;Kim, Seol-Ki;Choi, Sang-Jun;Lee, Chi-Hoon;Lee, Young-Don;Kim, Hyung-Bae;Baek, Hea-Ja
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • To verify the sex steroids which are involved in oocyte maturation of the blacktip grouper, $Epinephelus$ $fasciatus$, we incubated vitellogenic oocytes (0.41 and 0.50 mm in average diameter) in the presence of exogenous steroid precursor ($[^3H]17{\alpha}$-hydroxyprogesterone). Steroids were extracted, separated and identified by thin layer chromatography. The major metabolites produced were androstenedione, estradiol-$17{\beta}$, estrone and progestogens. Progestogen metabolites in the oocytes of 0.50 mm were more abundant than those of 0.41 mm. Also, we investigated the $in$ $vitro$ effects of human chorionic gonadotropin (HCG; 5, 50 and 500 $IU/m{\ell}$), $17{\alpha},20{\beta}$-dihydroxy-4-pregnen-3-one ($17{\alpha}20{\beta}P$) and $17{\alpha},20{\beta}$-trihydroxy-4-pregnen-3-one ($17{\alpha}20{\beta}21P$; 5, 50 and 500 $ng/m{\ell}$, respectively) on oocyte maturation. In the oocytes of 0.41 mm, treatment with 50 IU HCG stimulated GVBD ($55.30{\pm}1.20%$) compared with controls ($32.41{\pm}3.13%$, $p$<0.05). In the oocytes of 0.50 mm, treatment of $17{\alpha}20{\beta}P$ (50 and 500 $ng/m{\ell}$) stimulated GVBD ($50.13{\pm}2.52$ and $51.77{\pm}5.91%$, respectively) compared with controls ($36.81{\pm}2.89%$, $p$<0.05). Treatment with 500 IU HCG also stimulated GVBD ($49.59{\pm}5.15%$) compared with controls ($p$<0.05). Taken together, these results suggested that both HCG and $17{\alpha}20{\beta}P$ were effective on in vitro oocyte maturation and $17{\alpha}20{\beta}P$ may act as a maturation inducing hormone in blacktip grouper.

Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Treatment during Pre-maturation Increases the Maturation of Porcine Oocytes Derived from Small Follicles

  • Park, Kyu-Mi;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Cellular cyclic adenosine-3' 5'-monophosphate (cAMP) modulator is known as meiotic inhibitor and can delays spontaneous maturation in IVM experiment. Among many cAMP modulators, the role of Pituitary adenylate cyclase activating polypeptide (PACAP) on IVM isn't known. The purpose of this study is to improve the maturation of oocytes derived from follicles ${\leq}3mm$ in diameter through PACAP as meiotic inhibitor during pre-in vitro maturation (pre-IVM). First, we checked PACAP and its receptors in cumulus cells and, to establish the optimal phase and concentration of PACAP for pre-IVM, we conducted chromatin configuration assessments. As a result, the rate of GV (Germinal Vesicle) according to duration of pre-IVM was significantly decreased 12 h and 18 h after IVM (87.1 and 84.1%, respectively) compared to 0 h (99.4%). When COC was cultured for 18 h, the GV rate in the $1{\mu}M$ of PACAP treatment group (82.1%) was significantly higher than any other PACAP treatment groups (60.5, 64.1, 74.4 and 69.9 %, respectively). So, we divided into four groups as follows; MF (the conventional IVM group, obtained from follicle from 3 to 6 mm in diameter), SF (the conventional IVM group, obtained from follicle ${\leq}3mm$ in diameter), Pre-SF(-)PACAP (IVM group including 18 h pre-IVM without $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter) and Pre-SF(+)PACAP (IVM group including 18 h pre-IVM with $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter). To examine the effect of PACAP during pre-IVM, we investigated analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. In cumulus cells, PACAP receptors, ADCYAP1R1 and VIPR1 were detected but were not detected in oocytes. After IVM, the Pre-SF(+)PACAP had the highest Metaphase II rate (91.7%) among all groups (P<0.05). The GSH levels in the MF and Pre-SF(+)PACAP were significantly higher than in the other groups (P<0.05) and ROS levels was no significant difference among all groups. In conclusion, these results indicated that even though the oocytes were derived from SF, pre-IVM application of PACAP improved meiotic and cytoplasmic maturation by regulating intracellular oxidative stress.

Studies on the Induction of Oocyte Maturation of Korean Frogs(R. dybowskii and R. niqromaculata) in vitro. (한국산개구리(북장산개구리와 참개구리) 난자의 생체외 배양에 의한 성숙유도에 관하여)

  • 권혁방;조장현;최충길
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 1988
  • Korean frogs (R. dybowskii and R. nigromaculara) were collected from chonnam area and their oocyte maturation was induced by using in ultro follicle culture system. Follicles were isolated from the frog ovary and cultured for 24 hr in (amphibian Ringer's soluion AR) at 22 C in the presence or absence of hormones. Follicular cocytes of R. dybowskii were induced to mature (germinal vesicle breakdown, GVBD) by the presence of progesterone, 0.1 $\mu$g/2 ml and that of R. nigromaculata by 1 $\mu$g/2 ml of progesterone. Follicles of the frogs were also responded to (frog pituitary homogenate FPH) in terms of their cocyte maturation. Follicular cocytes of R. dybowskii were induced to mature by FPH at concentration of 0.01 pituitary equivalent/2 ml and that of R.nigromaculata at 0.1 pit equiv./2 ml. The culture time required for the maturation of bath frog follicles was 915 hr. The responsiveness of the follicles of korean frogs to hormones (progesterone or FPH) was nearly the same as that of R. pipiens which are most commonly used amphibians. Particularly, follicular cocytes of R. dybowskii used from February matured spontaneously without stimulation of hormones during in vitro culture. Furthermore, those cocytes were spontaneous- ly ovulted when the ovarian fragments were cultured in a flask.

  • PDF

Gonadal Development and Reproductive Cycle of Gomphina melanaegis (Bivalvia; Veneridae) (민들조개 (Gomphina melanaegis)의 생식소 발달과 생식주기)

  • LEE Jeong Yong;PARK Young Je;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.198-203
    • /
    • 1999
  • Gonadal development and reproductive cycle off Gomphina melanaegis collected in the coastal waters of Chumunjin, Korea were investigated monthly from April 1996 to April 1997. G. melanaegis was dioecious, The gonads were located between the digestive diverticula and muscle tissues of the foot, The ovary was composed of a number of ovarian sacs, and the testis was composed of several testicular tubules. The flesh weight rate was reached the maximum in August ($23.0\%$), and then decreased to $19.8\%$ in September. In March, the value was reached the minimum ($17.8\%$) and then increased, The size of mature oocyte was ranged $50\~60\mu$m in diameter and had a germinal vesicle with a nucleolus. Mature oocyte contained a large number of yolk granules and lipid granules in its cytoplasm. The spermatozoon was consisted of a conical nucleus with acrosome, a middle piece containing four mitochondria and proximal and distal centrioles, and a flagellum, Sex ratio (male/female) and minimum size for sexual maturation of G. melanaegis were 0.79 and about 25 mm in shell length, respectively. The reproductive cycle could be classified into five succesive stages: multiplicative (December to March), growing (April and May), mature(June), sprawning (July and August), and degenerative and resting (September to November) stages.

  • PDF

Progesterone Production and Oocyte Maturatf on of Frog (Rona nigromaculata and Rana rugoBa) Follicles in vitro (참개구리와 옴개구리 여포의 프로제스테론 생성과 난자의 성숙)

  • 권혁방;김지열;고선근
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 1990
  • Progesterone production and oocyte maturation in ovarian follicles of Rana nigromaculata and Rana rugosa were investigated. Addition of frog pituitary homogenate (FPH) to the in utiro cultured follicles of R. nigromaculata stimulated a marked increase in the accumulation and secretion of progesterone (P$_4$) by the follicles and induced their oocyte maturation (germinal vesicle breakdown, GVBD) in a dose dependent manner. The FPH (0.1 pituitary equivalent/2 ml)-inducted P4 peak appeared in 3-6 hours and followed by the oocyte GVBD in 9-12 hours after the hormone stimulation. lncreae of intrafollicular cAMP levels with forskolin (an adenylatecyclase stimulator) and 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor) mimic the FPH action in the stimulation of P$_4$ production but not in the induction of oocyte maturation. The in uitro cultured follicies of R. rugosa behaved very differently from other amphibian follicles. Addition of FPH-(0. 1 pit. equivl2 ml) to the culture medium neither stimulated P$_4$ production by the follicles nor induced the oocyte GVBD. However, treatment of the follicles with forskolin and IBMX drastically stimulated both the intrafollicular accumulation (800 pg/follicle) and secretion (1700 pg/follicle) of P$_4$ by the follicles during culture period. Thus, the data suggest that the follicles are ready to respond to cAMP increase but not to the FPH stimulation in terms of P$_4$ production.

  • PDF

Reduction of Mitochondrial Derived Superoxide by Mito-TEMPO Improves Porcine Oocyte Maturation In Vitro (Mito-TEMPO에 의한 미토콘드리아 유래 초과산화물의 감소가 돼지 난모세포 성숙에 미치는 영향)

  • Yang, Seul-Gi;Park, Hyo-Jin;Lee, Sang-Min;Kim, Jin-Woo;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: $79.9{\pm}3.8%$ vs G2: $57.5{\pm}4.6%$) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO ($0.1{\mu}M$, MT) treatment (G2: $68.4{\pm}3.2%$ vs G2 + MT: $73.9{\pm}1.4%$). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.

Exogenous Nitric Oxide Donation During In Vitro Maturation Improves Embryonic Development after Parthenogenesis and Somatic Cell Nuclear Transfer in Pigs

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Nitric oxide (NO) has an important role in oocyte maturation and embryonic development in mammals. This study examined the effect of exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) in a maturation medium on meiotic progression and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. When oocytes were exposed to $0.1{\mu}M$ SNAP for first 22 h of in vitro maturation (IVM) in Experiment 1, SNAP significantly improved blastocyst development in both defined and standard follicular fluid-supplemented media compared to untreated control (48.4 vs. 31.7-42.5%). SNAP treatment significantly arrested meiotic progression of oocytes at the germinal vesicle stage at 11 h of IVM (61.2 vs. 38.7%). However, there was no effect on meiotic progression at 22 h of IVM (Experiment 2). In Experiment 3, when oocytes were treated with SNAP at 0.001, 0.1 and $10{\mu}M$ during the first 22 h of IVM to determine a suitable concentration, $0.1{\mu}M$ SNAP (54.2%) exhibited a higher blastocyst formation than 0 and $10{\mu}M$ SNAP (36.6 and 36.6%, respectively). Time-dependent effect of SNAP treatment was evaluated in Experiment 4. It was observed that SNAP treatment for the first 22 h of IVM significantly increased blastocyst formation compared to no treatment (57.1% vs. 46.2%). Antioxidant effect of SNAP was compared with that of cysteine. SNAP treatment significantly improved embryonic development to the blastocyst stage (49.1-51.5% vs. 34.4-37.5%) irrespective of the presence or absence of cysteine (Experiment 5). Moreover, SNAP significantly increased glutathione (GSH) content and inversely decreased the reactive oxygen species (ROS) level and mitochondrial oxidative activity in IVM oocytes. SNAP treatment during IVM showed a stimulating effect on in vitro development of SCNT embryos (Experiment 7). These results demonstrates that SNAP improves developmental competence of PA and SCNT embryos probably by maintaining the redox homeostasis through increasing GSH content and mitochondrial quality and decreasing ROS in IVM oocytes.

Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro

  • Lee, Joo Bin;Lee, Min Gu;Lin, Tao;Shin, Hyeon Yeong;Lee, Jae Eun;Kang, Jung Won;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.956-965
    • /
    • 2019
  • Objective: The main goal of this study was to provide a morphological indicator that could be used to select high-quality oocytes of appropriate meiotic and developmental capabilities in pig. The higher quality of immature oocytes, the higher success rates of in vitro maturation (IVM) and in vitro fertilization (IVF). Thus, prior to the IVM culture, it is important to characterize oocytes morphologically and biochemically in order to assess their quality. Two of the largest indicators of oocyte quality are the presence of cumulus cells and status of chromatin. To investigate the effects of porcine oocyte chromatin configurations on the developmental capacity of blastocysts, we assessed oocyte chromatin status according to follicle size and measured the developmental potency of blastocysts. Methods: To sort by follicle size, we divided the oocytes into three groups (less than 1 mm, 1 to 3 mm, and more than 3 mm in diameter). To assess chromatin configuration, the oocytes were assessed for their stages (surrounded nucleolus [SN] germinal vesicle [GV], non-surrounded nucleolus [NSN] GV, GV breakdown, metaphase I [MI], pro-metaphase II [proMII], and metaphase II [MII]) at different maturation times (22, 44, and 66 h). To assess the development rate, oocytes of each follicle size were subjected to parthenogenetic activation for further development. Finally, GV oocytes were grouped by their chromatin configuration (SN, SN/NSN, and NSN) and their global transcriptional levels were measured. Results: SN GV oocytes were more suitable for IVF than NSN GV oocytes. Moreover, oocytes collected from the larger follicles had a greater distribution of SN GV oocytes and a higher developmental capacity during IVM, reaching MII more quickly and developing more often to blastocysts. Conclusion: Porcine oocytes with high-level meiotic and developmental capacity were identified by analyzing the relationship between follicle size and chromatin configuration. The porcine oocytes from large follicles had a significantly higher SN status in which the transcription level was low and could be better in the degree of meiotic progression and developmental capacity.

Detrimental effects of lipopolysaccharides on maturation of bovine oocytes

  • Zhao, Shanjiang;Pang, Yunwei;Zhao, Xueming;Du, Weihua;Hao, Haisheng;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1112-1121
    • /
    • 2019
  • Objective: Gram-negative bacteria lipopolysaccharide (LPS) has been reported to be associated with uterine impairment, embryonic resorption, ovarian dysfunction, and follicle retardation. Here, we aimed to investigate the toxic effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Methods: First, we developed an in vitro model to study the response of bovine cumulusoocyte complexes (COCs) to LPS stress. After incubating germinal vesicle COCs in $10{\mu}g/mL$ of LPS, we analyzed the following three aspects: the expression levels of the LPS receptor toll-like receptor 4 (TLR4) in COCs, activities of intracellular signaling protein p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-${\kappa}B$); and the concentrations of interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-${\alpha}$, and IL-6. Furthermore, we determined the effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Results: The results revealed that LPS treatment significantly elevated TLR4 mRNA and protein expression levels in COCs. Exposure of COCs to LPS also resulted in a marked increase in activity of the intracellular signaling protein p-p38 MAPK and NF-${\kappa}B$. Furthermore, oocytes cultured in maturation medium containing LPS had significantly higher concentrations of the proinflammatory cytokines IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. LPS exposure significantly decreased the first polar body extrusion rate. The cytoplasmic maturation, characterized by polar body extrusion and distribution of peripheral cortical granules, was significantly impaired in LPS-treated oocytes. Moreover, LPS exposure significantly increased intracellular reactive oxygen species levels and the relative mRNA abundance of the antioxidants thioredoxin (Trx), Trx2, and peroxiredoxin 1 in oocytes. Moreover, the early apoptotic rate and the release of cytochrome C were significantly increased in response to LPS. The cleavage, morula, and blastocyst formation rates were significantly lower in parthenogenetically activated oocytes exposed to LPS, while the incidence of apoptotic nuclei in blastocysts was significantly increased. Conclusion: Together, these results provide an underlying mechanism by which LPS impairs maturation potential in bovine oocytes.