• Title/Summary/Keyword: Geothermal source heat pump

Search Result 184, Processing Time 0.022 seconds

A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea (데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구)

  • Cho, Yong;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

Thermal Property Measurement of Bentonite-Based Grouts and Their Effects on Design Length of Vertical Ground Heat Exchanger (벤토나이트 그라우트의 열물성 측정 및 열물성이 수직 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In a ground-source heat pump (GSHP) system, a vertical ground heat exchanger (GHE) is widely accepted due to a higher thermal performance. In the vertical GHE, grout (also called grouting material) plays an important role in the heat transfer performance and the initial installation cost of the GHE. Bentonite-based grout has been used in practice because of its high swelling potential and low hydraulic conductivity. This study evaluated the thermo-physical properties of the bentonite-based grouts through lab-scale measurements. In addition, we conducted performance simulation to analyze the effect of mixed ratio of grouts on the design length and thermal performance of the vertical GHE. The simulation results show that thermally-enhanced grouts improve the heat transfer performance of the vertical GHE and thus reduce the design length of GHE pipe.

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.

A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector (Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구)

  • Baek, Nam-Choon;Lee, Jin-Kook;Yu, Chang-Kyun;Yoon, Eung-Sang;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

International Harmonized Economic Assessment Study of a Ground Source Heat Pump System (국제 호환형 지열히트펌프 시스템 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • This study intends to analyse the economical aspect of a GSHP(Ground Source Heat Pump) system compared to the conventional system which is consisted with a boiler and a chiller. This study has simulated four systems in Incheon. It developed and analyzed for applications in a residential and an office building which was based on the hourly EPI(Energy Performance Index, $kWh/m^2yr$). Case 1 is utilizing a boiler and a chiller to meet heating and cooling demand of a house. Case 2 is utilizing the same conventional set up as Case 1 of a office. Case 3 is summation of Case 1(house) and 2(office) systems and loads. And Case 4 is utilizing a GSHP to meet the combined loads of the house and office. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask-C SPB(Simple Payback) method. The SPB calculated the economic balanced year of the alternative system over the reference system. The SPB of the alternative systems (GSHP) with 10%, 30% and 50% initial incentive has been calculated as 9.38, 6.72 and 4.06 year respectively while the SPB without initial incentive of systems was 10.71 year.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.

Effects of Pipe Network Materials and Distance on Unused Energy Source System Performance for Large-scale Horticulture Facilities (배관 재질 및 길이에 따른 대규모 시설원예단지용 미활용 에너지 시스템의 성능 평가)

  • Lee, Jae-Ho;Yoon, Yeo-Beom;Hyun, In-Tak;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2014
  • This study investigated the effects of pipe network materials and distance on system performance utilizing unused energy sources in large-scale horticulture facility. For this, the modeling was performed with a 100 m long and 100 m wide rectangular shaped glass house having an area of 1ha ($10,000m^2$) using EnergyPlus software. The heat sources considered were air source, geothermal heat, power plant waste heat, sea water heat, and river water. The temperature variation of the fluid with regard to pipe material and distance from the heat source and the resultant heat pump electricity consumptions were calculated. It turned out that the fluid temperature reaching the heat pump increased as the distance from the heat source increased in case of sea water and river water, which have higher temperatures than the surrounding soil, improving the heat pump efficiency. It was vice versa in case of the power plant waste heat. In addition, pipe material of PVC showed the smallest effect on the system performance variation due to the lowest thermal conductivity, compared to PB and HDPE.

The feasibility study for the building integrated geothermal system using the horizontal heat exchanger (수평형 지중열교환기를 이용한 건물일체형 지열시스템의 도입타당성 분석)

  • Chae, Ho-Byung;Nam, Yujin;Yoon, Sung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • Recently, in order to prevent increasing energy usages in the international community, many countries have attempted to develop the innovative renewable energy systems. Among the renewable energy systems, Ground source heat pump(GSHP) system which supply the heating, cooling and hot water in the building has been attracted by its stability of heat production and high efficiency. However, the initial drilling costs become very expensive and the construction period takes longer the other systems, because GSHP system needs more than 100 m depth drilling. In this study, in order to reduce initial costs of the GSHP, the building integrated geothermal system using the horizontal heat exchanger was developed. The heating and cooling load in the standard housing model was calculated by a simulation and the system design capacity in the high-rise apartment was decided by the total load. Based on the system design capacity, the high-rise apartments were applied to a BIGS and vertical GSHP system and there are analyzed about initial costs. In the result, the initial cost of BIGS could reduce 24% of the initial cost of the vertical GSHP system.

A Study on the Performance Improvement of a Heat Pump System with a Dehumidification Function (제습기능을 구비한 열펌프의 성능개선에 관한 연구)

  • Ko, Gwang-Soo;Kim, Taehyung;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.529-534
    • /
    • 2014
  • This research developed a hybrid heat pump system with the functions of dehumidification and heating, which uses simulated air that is like underground air, from an environmental chamber as a heat source. The system consisted of three evaporators and three condensers that were installed in series in the air passage, between the underground and load space. As results, the total amount of dehumidification was 2.726 kg/h, and the heating $COP_h$ was 1.84 at air intake temperature $17^{\circ}C$ and relative humidity 70%, which is a similar condition to underground air. We found that the total amount of dehumidification also increased with the air temperature and humidity. The system $COP_s$ was reached at 2.5, if we include the latent heat of dehumidification in the conventional heat pump system's COP.