• Title/Summary/Keyword: Geothermal heat exchanger

Search Result 200, Processing Time 0.025 seconds

Study on Capacity Alteration of Geothermal Heat Exchanger by Changing Design Condition (설계조건 변화에 따른 지중열교환기 길이 변화 연구)

  • Park, Jong Il;Park, Kyung Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.4
    • /
    • pp.9-14
    • /
    • 2013
  • A ground loop heat exchanger for the ground source heat pump system is the important equipment determining the thermal performance and initial cost of the system. The length and performance of the underground heat exchanger is dependent on ground thermal conductivity, operation hours, ground loop diameter, grout, ground loop arrangement, pipe placement and design temperature. In this study we find out heat exchanger length with various design factor.

Effect of the Design Parameters of Geothermal Heat Exchanger Design Length (설계변수가 수직밀폐형 지중열교환기 설계길이에 미치는 영향)

  • Min, Kyong-Chon;Choi, Jae-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.10-15
    • /
    • 2011
  • A ground loop heat exchanger for the ground source heat pump system is the core equipment determining the thermal performance and initial cost of the system The length and performance of the heat exchanger is dependent on the ground thermal conductivity, the operation hours, the ground loop diameter, the grout, the ground loop arrangement, the pipe placement and the design temperature. The result of this simulation shows that higher thermal conductivity of grouting materials leads to the decrease length of geothermal heat exchanger from 100.0 to 84.4%.

The Study on EnergyPlus Simulation Application Feasibility for Exit Air Temperature Prediction through Horizontal Geothermal Heat Exchanger (수평형 지중 열교환기의 출구온도 예측을 위한 EnergyPlus 적용 타당성에 관한 연구)

  • Hwang, Yongho;Cho, Sungwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.131-136
    • /
    • 2016
  • Horizontal geothermal heat exchanger is affected by various factors such as pipe length, soil temperature, and outdoor environment. Simulation program is convenient for responding to various factors. The objective of this study was to determine the feasibility of using EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger in domestic. The correlation coefficient between EnergyPlus results and experimental results was 0.825. The correlation coefficient between EnergyPlus results and mathematical results was 0.722, indicating "The two values can based on Lousi on values can be Our results indicate that it is possible to use EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger.

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

Development of a simplified model to maximize operating efficiency of heat exchanger (지중 열 교환기 운영 효율의 최적화를 위한 단순화 모델의 개발)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Kim, Seong-Kyun;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.481-484
    • /
    • 2007
  • Efficiency of geothermal heat exchanger operation has close relation with temperature variation of the aquifer where the exchanger is installed. In the case of long-term operation, temperature distribution of the aquifer would be similar to that of water circulating in the exchanger, which causes the decrease of heat exchange rate. Therefore, the operation period of the heat exchanger should be controlled so that the temperature distribution of the aquifer is recovered. We developed a model to determine the operation period to acquire the optimal efficiency under the given aquifer condition. With this suggested method, when we use closed-loop heat exchanger, the operation efficiency of the geothermal heat exchanger is expected to be maximized by determining the optimal operation period.

  • PDF

Performance Monitoring Study of Building Integrated Geothermal System in Winter (건물일체형 지열시스템의 동계 성능 모니터링 연구)

  • Yu, Hyung-Kyu;Bae, Sang-Hwan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • The objective of this study is to develope ground heat exchanger using PHC pile used to building foundation, and it's element technology. So we made PHC piles into ground heat exchanger and evaluate it's performance. First, we studied PHC pile type, heat exchanger pipe, grouting materials, and present apartment house's foundation condition for PHC ground heat exchanger. As a result we designed BIGS(Building Integrated Geothermal System) prototype. Second, we applied BIGS to apartment houses' utility building in Osan built by Daelim. Third, we monitored heating performance of winter season. 1be result of heating performance was so good to apply to heat & cooling system in building.

Application textile-type geothermal heat exchanger for tunnel (텍스타일형 지중열교환기의 터널에서의 적용)

  • Lee, Chul-Ho;Lee, Kang-Ja;Gil, Hu-Jeong;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.604-607
    • /
    • 2009
  • The geothermal energy have been developed as the pro-environmental and the substantial long-term energy. Recently energy foundations and other thermo-active ground structures have been developed to enhance the use of geothermal energy. In this research, a tunnel wall is focused as a source of geothermal energy. If the tunnel wall can be used for geothermal source, it can provide relatively lower cost because it is not necessary to make a deep borehole like in case of closed-loop vertical ground heat exchanger. For analyzing efficiency of heat exchanger in tunnel, laboratory tests and the numerical analyses are performed.

  • PDF

Study on the Capacity Design Tool Development for Open-loop Ground Heat Exchanger (개방형 지중열교환기 용량 설계 방법에 관한 연구)

  • Ryu, Hyung-Kyou;Choi, Seung-Hyuck;Yun, Hi-won;Gim, Yu-Seung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • When applying geothermal systems in cities such as seoul where high density development prevails, the selection of geothermal system capable of obtaining a large capacity in the limited grounds is necessary. In this study, an easy-to-use design tool is developed in the form of spreadsheet by applying the calculation theory of existing closed-loop vertical ground heat exchanger that can be used in the early design stage of the open-loop ground heat exchanger. By only using the maximum cooling and heating load, it is possible to calculate optimal design open-loop ground heat exchanger. Further research is needed, we are plan to improve the program considering the heat loss of groundwater flowing in the inner casing, G-Function for Open-Loop, and verification by applying actual projects.

Monitoring of Subsurface Temperature Variation as Geothermal Utilization (지종열 활용에 따른 온도변화 모니터링)

  • Lee, Tae-Jong;Shim, Byoung-Ohan;Song, Yoon-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Long-term temperature monitoring has been performed for ground heat exchanger at the Earthquake Research Center (ERC) building in Korea Institute of Geoscience and Mineral Resources (KIGAM). For the 3 years of monitoring, overall temperature increases are observed at various depths within a borehole heat exchanger. But monitoring of ground temperature variation at the monitoring well beforehand showed that geothermal utilization is not the only source for the temperature increase, Because various kinds of sources can cause the ground temperature change, more thorough investigation should be followed.

Case study on construction and economic analysis of geothermal heat pump system (지열 시공 사례 및 동절기 경제성 분석)

  • Park, Chen-Kwan;Shin, Yang-Han;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Renewable energy is growing based on low-carbon green energy government policies. According to this policy, geothermal energy is highly efficient and environmental friendly energy which is being recently expanded. However, construction companies are generated disorderly but their ability has not been verified due to the poor geothermal facility which was reported in the media. In the this paper introduce on Busan region's largest geothermal facility, it was confirmed that thermal efficiency of the underground is close to heat exchanger performance. Therefore the study improving the efficiency of underground heat exchange found progressed. The results showed voids between borehole and ground heat exchanger should not be raised. And then geothermal facilities were installed very successfully through the principle grouting operation. As compared to the energy consumption on the basis of operating results energy usage was less than any other heat sources.