• Title/Summary/Keyword: Geothermal exchanger

Search Result 201, Processing Time 0.03 seconds

Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System (수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석)

  • Bae, Sangmu;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

A Study on performance of geothermal heatpump using domestic supply water source and geothermal source during winter (상수도열원과 지열원을 이용한 동절기 지열히트펌프 성능평가에 대한 연구)

  • Lee, Byoungdoo;Lee, Sejin;Lee, Daewoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194.1-194.1
    • /
    • 2011
  • 본 연구에서는 지열히트펌프 시스템의 열원으로써 지열이외에 건축물의 미활용 에너지라고 할 수 있는 상수도의 에너지를 활용하여 지중열교환기의 천공길이를 줄이는 것이 주요 목적이며, 또한 건물의 미활용에너지를 냉난방에너지원으로써 이용 가능한 것을 보여주는 것에 있다. 실험은 4인 가족기준으로 3RT 용량의 히트펌프를 설치하고 인당 평균 177 liter/day 기준으로 하루에 약 710 liter/day의 물을 사용하는 것으로 가정하였다(환경부 2007년 상수도 통계값). 시간당 가정내에서 사용하는 물량은 일정하지 않아 일일 8시간 사용하는 것으로 하여 약 1.5 LPM 으로 실험하였다. 저수조의 크기 및 지열 히트펌프의 열원으로써 사용가능한 열량을 계산하기 위해 CFD 시물레이션을 수행하였다. CFD의 결과 상수도를 급수하기 위한 저수조의 크기는 $2m^3$로 결정하였으며 이때 열원으로써 사용가능한 열량은 약 0.7RT였다. 48시간의 실험기간 동안 저수조를 통해 얻은 열원은 0.6RT 였으며 100m의 지중열교환기를 통해 얻은 열원은 2RT 였다. 히트펌프 자체의 난방 COP는 평균 4.2를 나타내었으며 펌프등의 소비전력을 포함한 System COP는 4.0 나타내었다. 이번 연구를 통해 건물의 미활용에너지인 저수조의 물을 이용하여 지열히트펌프의 열원으로써 이용 가능하며 기존의 지열히트펌프 시스템대비 천공길이 단축, 시공비 저감이 가능한 것을 볼 수 있었다.

  • PDF

A Study on the Effect of Scale Roughness attached Surface of Heat Exchangers (표면에 부착되는 스케일의 조도가 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Min-Soo;Choi, Nag-Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.235-242
    • /
    • 2010
  • An experimental investigation has been conducted to clarify roughness effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Examined was a circular cylinder, on which particles of silica scale having five different sizes are uniformly distributed. The Reynolds number was varied from 13000 through 50000. Local and mean heat transfer characteristics were measured as functions of particle size and Reynolds number. Subsequently the mean fouling resistance was estimated from those results, and its characteristics are clarified. It was found that the heat transfer of cylinders greatly varies with the fouling of geothermal water scale, especially its scale height. Further, the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

A Study on the Performance Evaluation of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 성능평가에 관한 연구)

  • Hwang In-Ju;Woo Nam-Sub;Lee Hong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • The present study concerns the annual performance evaluation of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of the residential buildings. The hybrid energy system consists of ground source heat pump of 2 RT for cooling, solar collectors of $4.8m^2$, storage tank of 250 liters and gas fired backup boiler of 11.6 kW. The averaged coefficients of performance of geothermal heat pump system during cooling and heating seasons are measured as 4.1 and 3.5, respectively. Also solar fraction for hot water is measured as 35 percent. Overall, the results shows that the hybrid-renewable energy system satisfactorily operated under all climatic conditions.

A Study on Selection of Pipe Materials Considering EWT (EWT를 고려한 지중열교환기 파이프 선정에 관한 연구)

  • Ryu, Hyung-Kyou;Chung, Min-Ho;Lee, Byung-Seok;Choi, Hyun-Jun;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

A Sutdy on the Apllicability of the Energy Pile System on Substation (변전소 구조물의 에너지파일 시스템 적용성 연구)

  • Lee, Daesoo;Oh, Gidae;Lee, Kangyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

Study on the Performance of a Variable Speed Cascade Heat Pump under Various Operating Conditions (운전조건에 따른 가변속 캐스케이드 열펌프의 성능 특성 연구)

  • Jeong, Kwangmoo;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Most researches done on heat pumps have been on heat pumps for refrigeration, cooling and heating. There is therefore the need for more research on hot water heat pumps, especially for high temperature. Even though the cascade heat pump cycle has a great potential more efficient hot water generation even at low evaporating temperatures, it has been researched least for this purpose. In this study, the heating performance of a variable speed cascade heat pump was investigated by varying operating conditions. For the same heating capacity values, it was found that increasing the low stage compressor speed was more suitable for enhancing the performance of the system to get a higher temperature.