• Title/Summary/Keyword: Geothermal Source Heat Pump

Search Result 180, Processing Time 0.021 seconds

A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source (하수열원 열펌프 시스템의 성능 시뮬레이션)

  • Park, Il-Hwan;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee;Baek, Young-Jeen
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.

A Study on the Reliability of District Heat Measuring Devices for Ground Source Heat Pump Systems (지열원 히트펌프 시스템에 적용되고 있는 난방용 적산열량계의 신뢰성 평가에 관한 연구)

  • Kang, Hee Jeong;Lee, Hyun Su;Jang, Myung Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A ground source heat pump system should be equipped with devices to measure the generated heating or cooling heat amount in Korea. Generally, the heat measuring devices have been developed to estimate consumed heat amount in residential or commercial buildings from a central air-conditioning system or a district heating system. In this study, two representive heat measuring devices used for buildings were selected, and the accuracy of them were experimentally estimated at the ground source heat pump operating conditions. The obtained heat amounts from the heat measuring devices were deviated within 4.3% comparing with the precise values calculated from an accredited test facility. Even though the accumulated heat amount values of the heat measuring devices had a small difference comparing with the precise values, the temperatures of heat measuring devices showed greatly different values comparing with the precise temperature. Therefore, it is highly recommended to develop the heat measuring devices which is appropriate for the ground source heat pump systems.

A Study on Comparative Analysis of Energy Performance of Hybrid Heat Pump Systems Using Ground Heat Source and Water Heat Source (지열원과 수열원을 이용한 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 연구)

  • Park, Sihun;Kim, Jonghyun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.59-67
    • /
    • 2021
  • In this study, the performance of the single heat source system and the hybrid system was comparatively analyzed. Case 1 is a ground heat source system, and Case 2 is a water heat source system. Case 3, a hybrid system, reduced the capacity of the ground heat source and applied a water heat source as an auxiliary heat source, and Case 4 was composed of a system that applied a water heat source as an auxiliary heat source to the ground heat source system. As a result of the simulation, in case 3, energy consumption was reduced by up to 2.67% compared to ground sources for cooling. In Case 4, COP was improved by up to 10.02% compared to ground sources during cooling, and EST was calculated to be 2.42℃ lower. During heating, 0.83% was improved compared to the water heat source. At this time, the EST was calculated to be 2.25℃ higher than the water heat source.

A Design and Test of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 설계 및 운전)

  • Lee, Jae-Hun;Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1273-1278
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

Design of a High Temperature Production Heat Pump System Using Geothermal Water at Moderate Temperature (중온 지열수를 이용한 고온제조 열펌프 시스템 해석 및 설계)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.638-641
    • /
    • 2008
  • Geothermal water at moderate temperature in a range between 30 to $50^{\circ}C$ exists sparse in surroundings. Mostly they are utilized as heat or water source at spar zones in Korea. However, a large portion of used water is discarded due to its poor recovery quality and inferior application technologies. In this research, an innovative heat pump system based on the hybrid concept that combinate compression cycle and absorption cycle was investigated mathematically. The hybrid heat pump aims to recycle various kind of the heat sources at moderate temperature including geothermal water effectively. The prime objective of the simulation is to design a compression/absorption hybrid heat pump system which can make high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ as well at the same using $50^{\circ}C$ geothermal heat water. As a result, primitive data was provided as a basis to design a prototype 3 RT class hybrid heat pump.

  • PDF

A Study on the Operating Performance of a Cascade Heat Pump (캐스케이드 열펌프시스템의 운전 특성에 관한 연구)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jea-Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

Analysis of the Initial Cost Payback Period on the Open-loop Geothermal System Using Two Wells (복수정을 이용한 개방형 지열 시스템의 초기투자비 회수기간 분석)

  • Cho, Jeong-Heum;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • Recently, ground source heat pump systems are being used in buildings for cooling and heating to reduce greenhouse gas and save energy. However, ground source heat pump systems mainly use the vertical closed-loop geothermal system design rather than the open-loop geothermal system design. This is due to a lack of knowledge and few research feasibility studies. In this research, a dynamic thermal analysis numerical simulation based on a standard house model was conducted for an open-loop geothermal system. Based on heating load analysis results, the life cycle costs of a standard house using an open two-well geothermal system were analyzed and compared with a vertical closed-loop geothermal system, and a diesel boiler. As a result, it was found that using an open two-well geothermal system shows economic return on investment after three years.

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Performance Evaluation of Ground Source Heat Pump System Utilizing Energy Pile in Apartment (공동주택에서 에너지 파일을 이용한 지열히트펌프 시스템의 성능 분석)

  • Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • In Korea, Apartment houses recently occupy over 80% of all buildings. Ground source system has to be designed to consider feature of apartment house. Most apartment houses use PHC pile to get a bearing power of the soil. Therefore, the purpose of this study is to evaluate performance of ground source heat pump system utilizing energy pile under apartment. Object of experiment is low-energy experiment apartment in Song-do and Energy Pile are applied to 80%, 100% energy reduction model for heat-source. First, performance evaluation of Energy Pile geothermal system was done during summer season. As a result, The COP(coefficient of performance) about geothermal heatpump was approximately 5-6 while cooling. In winter season, Long experiment was performed because it was very important to evaluate ground condition for long time. During heating experiment, Indoor room set temperature was $20^{\circ}C$ and kept constant by heating. Coefficient of performance for heat pump and overall system was calculated. It was 3.5-4.5 for COP and 2.5-3.7 for system COP.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.