• Title/Summary/Keyword: Geothermal Power

Search Result 175, Processing Time 0.025 seconds

Application of Enhanced Geothermal Systems for Jeju geothermal power plant (EGS 지열발전시스템을 적용한 제주 지열발전소)

  • Lee, Sang-Don
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.573-573
    • /
    • 2009
  • 지열에너지는 지구가 생성될 당시부터 지구 내부에 존재하는 무한한 열에너지로 온실가스 배출이 적으며 태양광이나 풍력 등 다른 신재생 에너지와는 달리 일정한 에너지를 공급할 수 있는 항상성 에너지로 기저부하를 담당할 수 있다. 지열을 이용한 전력 생산은 1904년에 이탈리아 라데렐로에서 처음으로 시작되었으며, 현재까지 화산지대를 중심으로 활발히 이루어지고 있다. 2001년에서 2005년 사이에 전세계 지열발전용량은 약 13% 증가하였으며, 2005년을 기준으로 약 8,933MWe의 지열발전설비가 가동 중이다. 최근 들어 지하 심부까지 시추하여 지열저장소(geothermal reservoir)를 형성하고 이를 통해 지열에너지를 생산하는 새로운 시스템인 EGS(Enhanced Geothermal Systems)가 개발됨에 따라 비화산지대에서도 지열발전소를 건설하려는 움직임이 가속화되고 있다. EGS는 지하 심부의 불투수성 결정질 암반에 존재하는 지열에너지의 경제적인 생산뿐만 아니라 물을 주입하여 생산시키는 순환 방식을 이용하여 지열에너지 획득의 매개 역할을 하는 지열수의 고갈 문제를 해결하였다. 결정질 암반에서의 지열저장소의 형성은 암반 내에 분포하는 불연속면에서 주로 발생하며, 이를 위한 압력 조건은 현지 암반의 응력 분포 특성과 암반 및 불연속면의 물성에 좌우된다. 시추공을 통해 지하 심부의 암반에 수압이 가해지면 물의 주입으로 불연속면의 마찰력이 감소하며, 이로 인해 불연속면에 전단변형이 발생하게 된다. 전단변형은 불연속면을 열린 상태로 유지시켜 지열저장소를 형성하게 된다. 불연속면의 전단 변형시 발생하는 미소 탄성파는 시추공 주변에 설치한 모니터링 장비에서 측정되며, 모니터링 장비에 의해 측정된 미소 탄성파 발생 지점의 클러스터는 지열저장소의 공간적 분포 및 규모를 추정할 수 있는 자료가 된다. 현재 EGS를 이용한 지열발전 프로젝트는 프랑스 슐츠, 스위스 바젤, 호주 하바네로에서 대표적으로 진행 중이다. 슐츠는 현재 1.5MWe의 파일럿 플랜트를 가동 중이며, 하바네로는 파일럿 플랜트 건설 단계를 진행중이다. 스위스 바젤은 지열저장소를 형성시킬 목적으로 수행된 주입시험에서 발생된 문제에 대한 기술의 신뢰성을 확보할 목적으로 잠시 중단된 상태다. 제주도는 신생대에 분출하여 형성된 대표적인 한국의 화산지형으로 지열부존 가능성이 높을 것으로 예상되는 지역이다. 따라서 폐사는 지열에너지 부존 특성을 파악하기 위한 심부 물리 탐사 및 탐사정 시추가 실시될 예정이며 궁극적으로 국내 최초의 상용화된 지열발전소 건설을 목표로 하고 있다.

  • PDF

Development of geothermal exchanger for efficiency improvement of solar cell module (태양전지 모듈의 효율개선을 위한 지열교환 장치 개발)

  • Lee, Jei-Hoon;Oh, Hun;Kim, Jun-Seong;Kim, Do-Woong;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2966-2970
    • /
    • 2015
  • Recently, solar light power generation is widely extended by support policy to regeneration energy. However generation efficiency is decreased when solar module maintain higher than certain point temperature. Therefore, it is need to maintenance under certain point temperature. An method of solving this problem, this paper is developed geothermal exchanger for efficiency improvement of solar cell module. Geothermal exchanger consisted of heat absorber of solar cell module and heat conductor and radiator. Heat of solar cell module is radiated in the earth by geothermal exchanger. An a result, geothermal exchanger is increased generation amount of solar cell module and experiment result showed costs to about 36% increment of generation power.

A Study on the Yearly Measurement and Numerical Analysis of Underground Temperature (년간 지중온도의 실측 및 수치해석에 관한 연구)

  • Shin, Y.H.;Tanshen, Md. Riyad;Chung, H.C.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • The geothermal energy is one of the renewable energy sources which can contribute in accomplishing a vision and goal of the national plan on energy for a government suggestion. Especially, the geothermal energy is evaluated as the nearly unlimited resources. The yearly underground temperature distribution by depth is very important to the design of air-conditioning system which uses a geothermal energy. Furthermore, there has no data for comparisons to numerical analysis. In this study, the yearly underground temperature is measured under the depth of 2 m in Tongyeong, and these data are compared with numerical analysis results for checking the accuracy. The results showed that the experimental temperature and numerical results had a good agreements and these results will be utilized to predict a performance of air-conditioning system for using a geothermal energy.

Empirical Results and Operational Cost Analysis of Geothermal Heat Pump System using Thermal Energy Storage in Cooling Season (축열식 지열원 히트펌프 시스템의 냉방기간 실증운전 결과 및 운영비용 분석)

  • Kim, Deukwon;Lee, Dongwon;Heo, Jaehyeok;Kim, Minhwi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • The geothermal heat pump systems were installed for heating and cooling of public buildings in Jincheon Eco-friendly Energy town. The heat pump system was operated at night to save on operational costs, and the cold heat was stored in thermal energy storage (TES). In this study, the performance of geothermal heat pump systems with the TES during the summer season was analyzed, and the operational costs with and without the TES were compared. The electric chiller model was used to simulate a heat pump applied without the TES system. Electric rates of each system were measured to calculate operational costs. When the TES is used in the air conditioning system, the electric load (30.4 MWh) calculated in the daytime can move to off-peak load time, and the operational cost is reduced by 36~54%.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment (실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

Demand Control Application Strategies for Saving Electric Power Price of Central Cooling System (중앙 냉방시스템의 전력량 요금절감을 위한 디맨드제어 적용방안 연구)

  • Hwang, Jin-Won;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • In this study, computer simulation for demand control strategies to save the electric energy and power price in the building central cooling system is done. The demand control and outdoor reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested control methods show better responses in the power price and energy consumption in comparison with the conventional one.

ORC System Performance Analysis upon R-245fa and Novec 649 (R-245fa 및 NOVEC 649 작동유체에 따른 ORC 시스템 성능 변화)

  • Chang, Hong-Soon;Han, Young-Sub;Song, Yeong-Kil;Kim, Sung-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.17-23
    • /
    • 2016
  • A test unit for Organic Rankine Cycle (ORC) power generation system was developed and experimentally reviewed the performance of the ORC system. Two different organic fluids (R-245fa & Novec 649) were tested as working fluids for the system. System behavior was measured and analyzed along with the variables, such as temperature, pressure, rpm and shaft power. It is one of the findings that Novec 649 fluid is to be less pressurized than R-245fa in order to up to the heat source (boiler) capacity, that limits the experiment as high as 2 kW in shaft power.

Enhanced Geothermal System Case Study: The Soultz Project (EGS 지열발전 연구사례: The Soultz Project)

  • Lee, Tae Jong;Song, Yoonho
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.561-571
    • /
    • 2013
  • Various experiences on enhanced geothermal system (EGS) has been accumulated from the Soultz project through various scientific experiments and research activities for more than 20 years since it started in the year of 1984 until the 1.5 MW Organic Rankine Cycle (ORC) binary power plant has been built up in Soultz-sous-$\hat{e}$ area, France. They have been applied to Cooper basin in Australia, Landau and Insheim in Germany and so forth. This report summaries the experiences from Soultz in the aspect of artificial reservoir creation, expecting to be helpful for reducing any trial and errors or unnecessary expenses in ongoing Korean EGS project in Pohang area, where the geological features are similar to Soultz area.