• Title/Summary/Keyword: Geothermal Energy Assessment

Search Result 24, Processing Time 0.024 seconds

Evaluation on Heating Effects of Geothermal Heat Pump System in Farrowing House (지열 난방시스템을 이용한 분만돈사의 난방효과 분석)

  • Choi, H.C.;Park, Jae-Hong;Song, J.I.;Na, J.C.;Kim, M.J.;Bang, H.T.;Kang, H.G.;Park, S.B.;Chae, H.S.;Suh, O.S.;Yoo, Y.S.;Kim, T.W.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.205-215
    • /
    • 2010
  • Geothermal heat pump system (GHPS) is an energy-efficient technology that use the relatively constant and renewable energy stored in the earth to provide heating and cooling. With the aim of using GHPS as a heating source, it's possibilities of application in farrowing house were examined by measuring environmental assessment and sow's performance. A total of 96 sows were assigned to 2 pig housings (GHPS and conventional housing) with 48 for four weeks in winter season. During the experimental period, indoor maximum temperature in GHPS-housing was measured up to $26.7^{\circ}C$, average temperature could maintain $21.2^{\circ}C$. The mean value of dust levels and $CO_2$, $NH_3$ and $H_2S$ gas emissions were decreased in GHPS-housing compare with those of conventional housing. Litter size, birth weight, parity and weaning weight did not differ between housings. However, feed intake of sow in GHPS-housing was lower than that of conventional housing. In energy consumption for heating, electric power consumption increased in GHPS-housing than the conventional housing, a 2,250 kwh increase, whereas there is no fuel usage for heater in GHPS-housing. Amount of ground water circulated for heating in cold weather for earth heat exchanger was 8.4-12.9 ton per day. In conclusion, GHPS may have environmental benefits and effectiveness of heating in farrowing housing and affect the performance in sows.

Petrographic Study(ASTM C 295) on the KEDO Concrete Aggregates (콘크리트용 KEDO 골재의 암석기재시험 (ASTM C295))

  • Jeong, Ji-Gon;Kim, Kyung-Su;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.589-599
    • /
    • 2007
  • For the preliminary judgement on the chemical stability of concrete aggregates mixed with cement paste, ASTM C 295 method can be applied prior to the long-term chemical test methods. By using this standard test method, the petrographic study on the appropriateness of natural KEDO aggregates for concrete was carried out. With the natural gravel and sand aggregates, the polarized microscope, stereoscopic microscope, and X-ray diffractometer were used for examination. The result shows the 23% of gravel aggregates and 5.1% of sand aggregates are chemically unstable. To select the favorable KEDO concrete aggregates, it is required to exclude the highly metamorphosed rocks, acidic volcanic rocks, highly foliated rocks, and expansive rocks identified from mortar-bar test. Further chemical test and mortar-bar test method integrated with this study is recommended for the suitability assessment of natural KEDO concrete aggregates.

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.