• Title/Summary/Keyword: Geotechnical tests

Search Result 2,347, Processing Time 0.028 seconds

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.

Fire-induced damage on Shield TBM concrete segment (터널 화재로 인한 콘크리트 세그먼트의 손상특성 규명)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.423-430
    • /
    • 2005
  • Fire accidents in underground space may bring much loss of lives as well as properties and result in catastrophic disasters. This study aimed to manufacture the high-temperature furnace capable of simulating fire scenarios (RABT and RWS) and carry out the preliminary fire tests to evaluate fire-induced damage in underground structures. Specimens used in the fire tests were the concrete segments generally used in shield TBM tunnels. The simulated fire scenario was set to the RABT curve that is the most representative fire scenario in underground space. From the fire tests, the spalling was estimated to reach approximately 20cm from the surface exposed to fire. In addition, from the observation of core specimens obtained after fire tests, the deteriorated zone of unspalled specimens amounted to approximately 10cm from the surface of spalling.

  • PDF

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

Installation Damage Assessment of Rigid Geogrid by Field Tests (현장실험에 의한 강성 지오그리드의 내시공성 평가)

  • Cho, Sam-Deok;Oh, Se-Yong;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.978-985
    • /
    • 2004
  • Geogrid may be damaged during its installation in the filed. The installation damage mainly depends on two factors, which are materials used and construction activities. Materials relate to geogrid and soils, and construction activities are mainly related to installation of geogrid and compaction of soils. This paper describes the results of a series of field tests, which were conducted to assess the installation damage of the various geogrids according to different fill materials. After field installation damage tests, the change in tensile strength of geogrids was determined from wide width tensile tests using both damaged and undamaged specimens.

  • PDF

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints

  • Ding, Wen-Qi;Peng, Yi-Cheng;Yan, Zhi-Guo;Shen, Bi-Wei;Zhu, He-Hua;Wei, Xin-Xin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.337-354
    • /
    • 2013
  • For shield TBM (Tunnel Boring Machine) tunnel lining, the segment joint is the most critical component for determining the mechanical response of the complete lining ring. To investigate the mechanical behavior of the segment joint in a water conveyance tunnel, which is different from the vehicle tunnel because of the external loads and the high internal water pressure during the tunnel's service life, full-scale joint tests were conducted. The main advantage of the joint tests over previous ones was the definiteness of the loads applied to the joints using a unique testing facility and the acquisition of the mechanical behavior of actual joints. Furthermore, based on the test results and the theoretical analysis, a mechanical model of segment joints has been proposed, which consists of all important influencing factors, including the elastic-plastic behavior of concrete, the pre-tightening force of the bolts and the deformations of all joint components, i.e., concrete blocks, bolts and cast iron panels. Finally, the proposed mechanical model of segment joints has been verified by the aforementioned full-scale joint tests.

Engineering Characteristics of Stabilized Bed Sediment (안정처리된 하상토의 공학적 특성)

  • Kim, Jin-Man;Kim, Kyung-Min;Choi, Bong-Hyuck;Kim, Hak-Sam;Han, Sang-Hyun;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.101-112
    • /
    • 2007
  • This paper presents the results of an investigation on the ways of utilizing bed sediment as levee materials by laboratory tests. A series of laboratory tests were performed to asses the improved engineering characteristics of bed sediment using admixture cement and weathered granite soils. In this study, several tests such as the grain size analysis test, direct shear test, permeability test, unconfined compression test were peformed. The results of the analyses indicated that the treated bed sediment with cement and weathered granite soils can have the adaptability to the fill material for levee.

Utilization of an Instructional Centrifuge Test for Teaching in Geotechnical Engineering(Focus on Slope Stability Model) (지반공학 분야에서 교육용 도구로서의 원심모형실험 활용법 (사면안정 모델을 중심으로))

  • Lee, Kang-Il;Kim, Tae-Hyung;Kim, Chan-Kee;Back, Won-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1372-1377
    • /
    • 2008
  • Recently, centrifuge tests have been widely used as tools in geotechnical engineering researches in domestic and foreign. However, the size of these centrifuge facilities is very large and thus the tests require for long time, high expense, and many labors. In this study, therefore, a small size of instructional centrifuge, which can conduct tests in a short period of time effectively, was introduced. This centrifuge facility introduced in here was developed for geotechnical engineering education for graduate and undergraduate students. The slope stability model having $65^{\circ}$ slope formed with clay was used to investigate the application of the instructional centrifuge by considering experimental procedures and results.

  • PDF

Geotechnical parameters from pressuremeter tests for MRT Blue Line extension in Bangkok

  • Likitlersuang, Suched;Surarak, Chanaton;Wanatowski, Dariusz;Oh, Erwin;Balasubramaniam, Arumugam
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Construction of the extension project of the Bangkok MRT Blue Line underground railway was recently started in 2011. The construction of approximately 5 km long underground tunnel and 4 deep excavations of underground station are considered to be the most important geotechnical works. The pressuremeter was selected as a high-quality in situ testing of the soil to evaluate design parameters for the project. In addition, other field and laboratory tests such as vane shear and $CK_0U$ triaxial tests were included in the investigation programme. This paper aims to present the ground conditions encountered along the MRT Blue Line extension project as well as the site investigation and interpretation techniques with particular focus on the pressuremeter tests. The results are also compared with the pressuremeter investigation from the previous Bangkok MRT project.

Utilization of an Instructional Centrifuge Test for Teaching in Geotechnical Engineering (Focus on Retaining Wall Model) (지반공학 분야에서 교육용 도구로서의 원심모형실험 활용법 (옹벽 모델의 예를 중심으로))

  • Kim, Tae-Hyung;Lee, Kang-Il;Kim, Tae-Hoon;Lee, Sung-Chul;Hwang, Joong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1254-1259
    • /
    • 2008
  • Recently, centrifuge tests have been widely used as tools in geotechnical engineering researches in domestic and foreign. However, the size of these centrifuge facilities is very large and thus the tests require for long time, high expense, and many labors. In this study, therefore, a small capacity(2g ton) of instructional centrifuge, which can conduct tests in a short period of time effectively, was introduced. The results of centrifuge tests conducted on the retaining wall both passive and active cases was used. Medium size of sand was used with sieve off fines in sand using #40 sieve. Based on the test results, this centrifuge facility introduced in here can be enough used for geotechnical engineering education for graduate and undergraduate students.

  • PDF