• Title/Summary/Keyword: Geotechnical survey

Search Result 280, Processing Time 0.025 seconds

A Study on Provenance of the Stone Relics of WoljungGyo Bridge built in Silla Kingdom based on Geological Properties (신라시대 교량 월정교에 사용된 석재 유구의 지질공학적 특성에 근거한 산지 추정 연구)

  • Lee, Kwnag-wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.79-88
    • /
    • 2016
  • A derelict bridge called WoljungGyo is being restored in Gyeongju, the capital city of ancient Silla. WoljungGyo was originally built in 760AD, and later rebuilt in 1280AD during the Goryeo Kingdom. The bridge lasted in working condition for at least 520 years. The bridge was uncovered to the remains of both abutments and four piers, with only one or two steps remaining. The provenance of the WoljungGyo stone relics was investigated to decide the type of stone for the restoration works. Field survey were carried out in the whole area of Gyeongju-Si with petrological investigation for the stone relics. Results of the study present that Namsan granite was used in those days for building of the WoljungGyo. It is seems that the used stones were obtained from tor or core stone around the Tongil-jeon and Tap-gok area in the east side of Mt. Namsan.

A Study on Problems and Improvements of Face Mapping during Tunnel Construction (국내 터널시공 중 막장지질조사의 문제점 및 개선방안에 관한 연구)

  • Kim Kwang-Yeom;Kim Chang-Yeng;Yim Sung-Bin;Yun Hyun-Seok;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.265-273
    • /
    • 2006
  • Face mapping during tunnel construction is useful and critical to predict the characteristics and stability condition of following tunneling sections and to select optimum support pattern. Therefore, a detailed geological survey of the tunnel faces, as important as a routine underground survey and a RMR evaluation, should provide critical information of the tunnel face condition in terms of the engineering geological condition and the safety of working environment for the following tunneling section. But the results of the face investigation have not been applied satisfactorily during tunneling due to limitation of technique, experience and time. This study analyze problems of face mapping in tunnel construction site by using statistical results of face mapping sheets obtained from completed tunnels, and suggest several opinions to improve face mapping during tunnel construction.

Experimental and numerical investigation on bearing mechanism and capacity of new concrete plug structures

  • Weng, Yonghong;Huang, Shuling;Xu, Tangjin;Zhang, Yuting
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.459-468
    • /
    • 2019
  • The stability and safety of concrete plug structure of diversion tunnel is crucial for the impoundment of upstream reservoir in hydropower projects. The ongoing Wudongde hydropower plant in China plans to adopt straight column plugs and curved column plugs to replace the traditional expanded wedge-shaped plugs. The performance of the proposed new plug structures under high water head is then a critical issue and attracts the attentions of engineers. This paper firstly studied the joint bearing mechanism of plug and surrounding rock mass and found that the quality and mechanical properties of the interfaces among plug concrete, shotcrete, and surrounding rock mass play a key role in the performance of plug structures. By performing geophysical and mechanical experiments, the contact state and the mechanical parameters of the interfaces were analyzed in detail and provide numerical analysis with rational input parameters. The safety evaluation is carried out through numerical calculation of plug stability under both construction and operation period. The results indicate that the allowable water head acting on columnar plugs is 3.1 to 7.4 times of the designed water head. So the stability of the new plug structure meets the design code requirement. Based on above findings, it is concluded that for the studied project, it is feasible to adopt columnar plugs to replace the traditional expanded wedge-shaped plugs. It is hoped that this study can provide reference for other projects with similar engineering background and problems.

Quantification on Dam Condition Related to Internal Erosion of an Embankment Dam and its Applicability Evaluation (필댐의 내부침식과 관련된 댐 상태의 정량화 및 적용성 평가)

  • Heo, Gun;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.5-14
    • /
    • 2019
  • The typical four conditions related to internal erosion were set from the results of the regular dam safety inspection for 17,500 dams, and a questionnaire survey was conducted for dam safety experts to quantify these four typical current dam conditions with scores between 0 and 10, respectively. In addition, we proposed 'possible score range' for each condition to minimize the decision limits for dam managers to quantify dam conditions while helping to quantify various dam conditions except 4 representative conditions. A case study based on 'quantified score' and 'possible score range' for each condition showed that this method consistently reflects the dangerousness of the dam and provides a reasonable probability of failure. This helps to overcome limitations of dam rating determination by weighted average, and it will help to evaluate dangerous dams as dangerous dams.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Case Study on Location of Possible Tension Crack in Rock Slope (암반 비탈면의 인장균열 위치 선정에 관한 사례 연구)

  • Jeon, Byung-Gon;Kim, Jiseong;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.5-17
    • /
    • 2021
  • This study aims to investigate the causes and countermeasures for the occurrence of tension cracks in the slope of the rock mass of heavy equipment for road construction. Electric resistivity survey was performed to investigate the expandable tensile crack range. As a result of examining the distribution of soft zones in the rock mass, a low specific resistance zone was found at the bottom of the access road where tensile cracks occurred. It was confirmed that a low resistivity zone was distributed near the top of the excavation slope. Therefore, reinforcements was performed by determining the location of the possible tensile crack as the top of the excavation slope. Two rows of reinforced piles and anchors were proposed as a reinforcement method, and the slope stability analysis showed that the allowable safety factor was satisfied after reinforcements.

VS Prediction Model Using SPT-N Values and Soil Layers in South Korea (표준관입시험 및 시추공 정보를 이용한 국내 전단파속도 예측)

  • Heo, Gi-Seok;Kwak, Dong-Youp
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.53-66
    • /
    • 2022
  • The national ground survey database (GeoInfo) distributes numerous ground survey data nationwide. Many standard penetration test results exist in this database; however, the number of shear wave velocity (VS) data is small. Hence, to use abundant standard penetration test-N values to predict VS, this study proposed a new empirical N-VS relationship model using GeoInfo data. The proposed N-VS model is a single equation regardless of geological layer types; the layer type only specifies the upper limit of VS. To validate the proposed model, residual analysis was performed using a test dataset that was not used for the model development. Therefore, this study's proposed model performed better than N-VS models from previous studies. Since the N-VS model in this study was developed using sufficient data from GeoInfo, we expect that it is the most applicable to GeoInfo dataset for VS prediction.

A strategy to enhance the efficiency of land seismic reflection method via controlling seismic energy radiation pattern. (지면 탄성파 반사법의 효율성 향상을 위한 탄성파 발생원 에너지 방사형 변조기법)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.807-814
    • /
    • 2004
  • Land seismic reflection survey has been increasingly demanded in various civil engineering works because of its own ability to delineate layers, water table, to detect cavities or fracture zones, to estimate seismic velocities of each layer. However, our shallow subsurface structures are very complex. The relatively thin layer(mostly soil) to the wavelength directly followed by a basic rock with high impedance used to generate complicated surface waves, kind of channel waves with high amplitude that is dominate in entire seismograms and hence the useful reflection events will be almost hopelessly immersed in the undesired surface waves. Thus, it would seem that the use of traditional seismic survey could not be likely to provide in itself a satisfactory information about our exploration targets. This paper hence introduces an efficient measuring strategy illustrating a properly controlled arrangement of the vertical single force sources commonly used, yielding a very sharply elongated form of P-energy with a minimum of S radiation energy, what we call, P-beam source. Abundant experiments of physical modeling showed that in that way the surface waves could be enormously reduced and the reflection events would be additive and thus reinforced. Examples of field data are also illustrated. The contribution of P-beam source will be great in civil engineering area as well as in general geological exploration area.

  • PDF

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

Numerical simulation study on applicability of electrical resistivity survey at tunnel face (터널 굴착면에서의 전기비저항 탐사 적용성에 관한 수치해석 연구)

  • Yi, Myeong-Jong;Kim, Nag-Young;Lee, Sangrae;Hwang, Bumsik;Ha, Myung Jin;Kim, Ki-Seog;Cho, In-Ky;Lee, Kang-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.279-292
    • /
    • 2022
  • Unexpected anomalies in the geotechnical investigation at design stage may cause problems during tunnel excavation. Therefore, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation in order to prevent tunnel collapse. Despite the fulfillment of an electrical resistivity survey at the tunnel face, the existing electrical resistivity survey program can produce distorted results by the limitation of tunnel modelling. In this background, this study develops a modelling program for an electrical resistivity survey considering the tunnel shape. Numerical simulation and inverse calculation were performed for the electrical resistivity survey in the tunnel using the developed program. As a result, it was proved that the developed program could predict accurately the anomalous object's location and condition ahead of the tunnel face.