• Title/Summary/Keyword: Geostatistical

Search Result 195, Processing Time 0.024 seconds

Analysis of Spatial Variability for Particle Size Distribution of Field Soils -I. Variogram (토양(土壤)의 입경분포(粒徑分布)에 대(對)한 공간변이성(空間變異性) 분석(分析) -I. Variogram)

  • Park, Chang-Seo;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.212-217
    • /
    • 1984
  • Spatial variabilities of particle size distribution of 96 samples from Hwadong SiCL and Jungdong Sl were studied by using geostatistical concepts. The measurement was made at the nodes of the regular grid consisting of 12 rows and 8 columns. Sample spacing within rows and columns was 3 and 2 meters, respectively. The results are summarized as follows. 1. Variograms of Hwadong SiCL were fitted for the linear model and those of Jungdong SL for the spherical model. 2. Variograms of properties for Hwadong and clay for Jungdong showed the pure nugget effect. Those of silt and clay for Jungdong, however, appeared the nugget effect. 3. The minimum number of samples necessary to reproduce results similar to the true mean of the 96 measured values was approximately estimated. The minimum sample sizes of silt, clay, and sand in Hwadong SiCL were 27, 13, and 6, respectively. And the minimum sample size of clay in Jungdong SL was 17. 4. The approximate number of samples required to detect the difference of 5% of the true mean with 0.95 confidence level was estimated. The resulting number of samples for silt and sand in Jungdong was 14, and 26, respectively.

  • PDF

Geospatial Analysis and Modeling in Korea: A Literature Review (한국의 지리공간분석 및 모델링 연구)

  • Lee, Sang-Il;Kim, Kam-Young
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.4
    • /
    • pp.606-624
    • /
    • 2012
  • The main objective of this paper is to provide an adequate and comprehensive review of what has been done in South Korea in the field of geospatial analysis and modeling. This review focuses on spatial data analysis and spatial statistics, spatial optimization, and geosimulation among various aspects of the field. It is recognized that geospatial analysis and modeling in South Korea got through the initial stage during the 1990s when computer and analytical cartography and GIS were introduced, moved to the growth stage during the first decade of the $21^{st}$ century when there was a surge of relevant researches, and now is heading for its maturity stage. In spatial data analysis and spatial statistics, various topics have been addressed for spatial point pattern data, areal data, geostatistical data, and spatial interaction data. In spatial optimization, modeling and applications related to facility location problems, districting problems, and routing problems have been mostly researched. Finally, in geosimulation, while most of research has focused on cellular automata, studies on agent-based model and simulation are in beginning stage. Among all these works, some have fostered methodological advances beyond simple applications of the standard techniques.

  • PDF

An Analysis on the Spatio-temporal Heterogeneity of Real Transaction Price of Apartment in Seoul Using the Geostatistical Methods (공간통계기법을 이용한 서울시 아파트 실거래가 변인의 시공간적 이질성 분석)

  • Kim, Jung Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.75-81
    • /
    • 2016
  • This study focused on exploring real transaction price of apartment and spatial and temporal heterogeneity of the variables that influence real transaction price of apartment from the spatial and temporal perspective. As independent variables that are considered to influence real transaction price of apartment, transport, local characteristics, educational conditions, population, and economic characteristics were taken into account. Accordingly, the influence of independent variables and spatial distribution pattern were analyzed from the global and local aspects. The spatial and temporal changing patterns of real transaction price of apartment which is a dependent variable were analyzed. First, to establish an analysis model, OLS analysis and GWR analysis were conducted, and thereby more efficient and proper model was selected. Secondly, to find spatial and temporal heterogeneity of independent variables with the use of the selected GWR model, Local $R^2$ was used for local analysis. Thirdly, to look into spatial distribution of independent variables, kriging analysis was carried out. Therefore, based on the results, it is considered that it is possible to carry out more microscopic housing submarket analysis and lay the foundation for establishing a policy on real property.

Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information (공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가)

  • Lee, Seonyoung;Oh, Seokhoon
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2019
  • A seismic hazard map based on spatial analysis of various sources of geologic seismic information was developed and assessed for regional seismic vulnerability in South Korea. The indicators for assessment were selected in consideration of the geological characteristics affecting the seismic damage. Probabilistic seismic hazard and fault information were used to be associated with the seismic activity hazard and bedrock depth related with the seismic damage hazard was also included. Each indicator was constructed of spatial information using GIS and geostatistical techniques such as ordinary kriging, line density mapping and simple kriging with local varying means. Three spatial information constructed were integrated by assigning weights according to the research purpose, data resolution and accuracy. In the case of probabilistic seismic hazard and fault line density, since the data uncertainty was relatively high, only the trend was intended to be reflected firstly. Finally, the seismic activity hazard was calculated and then integrated with the bedrock depth distribution as seismic damage hazard indicator. As a result, a seismic hazard map was proposed based on the analysis of three spatial data and the southeast and northwest regions of South Korea were assessed as having high seismic hazard. The results of this study are expected to be used as basic data for constructing seismic risk management systems to minimize earthquake disasters.

Spatial Distribution Modeling of Daily Rainfall Using Co-Kriging Method (Co-kriging 기법을 이용한 일강우량 공간분포 모델링)

  • Hwang Sye-Woon;Park Seung-Woo;Jang Min-Won;Cho Young-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.669-676
    • /
    • 2006
  • Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.

Prediction of Ground Condition and Evaluation of its Uncertainty by Simulated Annealing (모의 담금질 기법을 이용한 지반 조건 추정 및 불확실성 평가에 관한 연구)

  • Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.275-287
    • /
    • 2005
  • At the planning and design stages of a development of underground space or tunneling project, the information regarding ground conditions is very important to enhance economical efficiency and overall safety In general, the information can be expressed using RMR or Q-system and with the geophysical exploration image. RMR or Q-system can provide direct information of rock mass in a local scale for the design scheme. Oppositely, the image of geophysical exploration can provide an exthaustive but indirect information. These two types of the information have inherent uncertainties from various sources and are given in different scales and with their own physical meanings. Recently, RMR has been estimated in unsampled areas based on given data using geostatistical methods like Kriging and conditional simulation. In this study, simulated annealing(SA) is applied to overcome the shortcomings of Kriging methods or conditional simulations just using a primary variable. Using this technique, RMR and the image of geophysical exploration can be integrated to construct the spatial distribution of RM and to evaluate its uncertainty. The SA method was applied to solve an optimization problem with constraints. We have suggested the practical procedure of the SA technique for the uncertainty evaluation of RMR and also demonstrated this technique through an application, where it was used to identify the spatial distribution of RMR and quantify the uncertainty. For a geotechnical application, the objective functions of SA are defined using statistical models of RMR and the correlations between RMR and the reference image. The applicability and validity of this application are examined and then the result of uncertainty evaluation can be used to optimize the tunnel layout.

Impacts of Combined Hydrogeological and Chemical Heterogeneities on the Transport of Leachate through Landfill Sites (수리지질학적, 화학적 특성의 복합 불균질성이 매립지반 내 침출수 이동에 미치는 영향)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2009
  • The transport of landfill leachate in the subsurface formations of unlined landfill sites is considered. The impacts of hydrogeological and chemical heterogeneities on the leachate transport are assessed by examining the results from a series of Monte-Carlo simulations. The landfill system simulated in this study is hypothetically represented with three levels of spatial variability for the hydrogeological and chemical parameter; (1) homogeneous hydraulic conductivity (K) and distribution coefficient ($K_d$), (2) K heterogeneity only, and (3) combined heterogeneities of K and $K_d$. To calculate the transport of leachate through negatively-correlated random hypothetical K-$K_d$ fields generated using geostatistical input parameters, a saturated flow model is linked with a contaminant transport model. Point statistic values such as mean, standard deviation, and coefficient of variation of the concentration were obtained from 100 Monte-Carlo trials. Results of point statistics show that the heterogeneities of K and $K_d$ in the landfill site prove to be an important parameter in controlling leachate concentrations. Consideration of combined K and $K_d$ heterogeneities results in enhancing the variability of contaminant transport. The variability in the leachate concentration for different realizations also increases as the distance between source and monitoring well increase.

Kriging Analysis for Spatio-temporal Variations of Ground Level Ozone Concentration

  • Gorai, Amit Kumar;Jain, Kumar Gourav;Shaw, Neha;Tuluri, Francis;Tchounwou, Paul B.
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2015
  • Exposure of high concentration of ground-level ozone (GLO) can trigger a variety of health problems including chest pain, coughing, throat irritation, asthma, bronchitis and congestion. There are substantial human and animal toxicological data that support health effects associated with exposure to ozone and associations have been observed with a wide range of outcomes in epidemiological studies. The aim of the present study is to estimate the spatial distributions of GLO using geostatistical method (ordinary kriging) for assessing the exposure level of ozone in the eastern part of Texas, U.S.A. GLO data were obtained from 63 U.S. EPA's monitoring stations distributed in the region of study during the period January, 2012 to December, 2012. The descriptive statistics indicate that the spatial monthly mean of daily maximum 8 hour ozone concentrations ranged from 30.33 ppb (in January) to 48.05 (in June). The monthly mean of daily maximum 8 hour ozone concentrations was relatively low during the winter months (December, January, and February) and the higher values observed during the summer months (April, May, and June). The higher level of spatial variations observed in the months of July (Standard Deviation: 10.33) and August (Standard Deviation: 10.02). This indicates the existence of regional variations in climatic conditions in the study area. The range of the semivariogram models varied from 0.372 (in November) to 15.59 (in April). The value of the range represents the spatial patterns of ozone concentrations. Kriging maps revealed that the spatial patterns of ozone concentration were not uniform in each month. This may be due to uneven fluctuation in the local climatic conditions from one region to another. Thus, the formation and dispersion processes of ozone also change unevenly from one region to another. The ozone maps clearly indicate that the concentration values found maximum in the north-east region of the study area in most of the months. Part of the coastal area also showed maximum concentrations during the months of October, November, December, and January.

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.

Annual Average Daily Traffic Estimation using Co-kriging (공동크리깅 모형을 활용한 일반국도 연평균 일교통량 추정)

  • Ha, Jung-Ah;Heo, Tae-Young;Oh, Sei-Chang;Lim, Sung-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it's difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.