• Title/Summary/Keyword: Geostationary satellites

Search Result 150, Processing Time 0.029 seconds

Residual Propellant Gauging Methods for Geostationary Satellites and Recent Technology Status (정지궤도위성의 잔여추진제량 측정방법 및 기술동향)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.870-877
    • /
    • 2014
  • Geostationary satellites undergo various orbital perturbations and this results in location change. Therefore, all the geostationary satellites use the thruster in order to control the location change. For this purpose, the suitable amount of liquid propellant is mounted and the amount of propellant is reduced as time goes by. This means that the lifetime of the satellite depends on the residual propellant amount. Therefore precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. In this paper, we introduce the propellant gauging methods used in the geostationary satellites and the propellant gauging method studied in the laboratory level.

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

SPIN PERIODS ESTIMATION OF GEOSTATIONARY SPIN-STABILIZED SATELLITES (정지궤도 회전안정화 위성의 자전주기 추정)

  • 이동규;김상준;박준성;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • Optical observations of Geostationary and Molynia orbit spin-stabilized satellites over the Korean peninsula have been carried out at the Kyung Hee University Observatory with a 30 inch telescope. We have observed 5 spin-stabilized satellites, and obtained 0spin periods, which can be used for deducing a design for each bus model. Verifications of spin periods of 3 known satellites from manufacturer, and observations of 2 unknown satellites were made. The difference between known spin periods and observed spin periods is 0.06sec on the average and the difference of those spin rates is 3.3rpm on the average. Those results indicate that spin periods and spin rates of observed geostationary spin-stabilized satellites are within operating limits. Spin rates of unknown satellites, Fengyun 2B and Molynia 1-87 are 89.3rpm, 78.4rpm earh. It is suggested that the research of spin stabilized satellites can be used for the determinations of standard light sources for short period celestial objects and helpful for the constructions of satellite databases with photometric and/or spectroscopic satellite observations.

Analysis of Interference Effect Between Geostationary Orbit Link and Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Park, Cheol-Sun;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.344-350
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance. To analyze the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the results, the interference effect into the geostationary orbit service from non-geostationary orbit link is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link. However, the angle between the interference orbit and geostationary orbit gives more effect to the system performance then the number of the interference orbit.

  • PDF

Study on the Advanced S-band Telecommand and Telemetry Formats for the Geostationary Orbit Satellites Operation (정지궤도위성 운영을 위한 향상된 S-band 원격명령어 및 원격측정데이터 포맷에 대한 연구)

  • Lee, Nayoung;Shin, Hyun-Kyu;Cheon, Yee-Jin;Choi, Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.417-424
    • /
    • 2021
  • The S-band telemetry and telecommand formats for geostationary orbit satellites should have sufficient reliability, since they transmit massive satellite health data and receive the mission commands in the 36,000km of the geostationary orbit. Also, they have to efficiently manage the large quantity of satellite health data under the limited data transmission rate. Cheollian-2A and 2B satellites were developed by Korea Aerospace Research Institute and launched at 2018 and 2020, respectively. Their missions are to conduct continuously the mission of Cheollian-1, which was the first geostationary orbit satellite of Korea. Therefore, the fundamental S-band data format design for Cheollian-2A and 2B should meet the requirements of Cheollian-1. Meanwhile the latest remote data processing techniques for these newest geostationary orbit satellites should be implemented. In this paper, the advanced S-band space data formats and management methods are proposed for more efficient data transmission, reception and operation with the limited data rate of the geostationary orbit satellites. The implemented results in the flight software of Cheollian-2A and 2B are described in detail.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

A Study on Legal Issues in Telecommunication and Direct Broadcasting by Uses of Artificial Satellites (정보화(情報化) 시대(時代)에서의 통신(通信) 및 방송위성이용(放送衛星利用)에 따르는 법적(法的) 문제(問題) 분석(分析)과 대응방안 연구(硏究))

  • Lee, Young-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.9
    • /
    • pp.445-488
    • /
    • 1997
  • In the forthcoming 21st century new technical and scientific developments in outer space demands new approaches towards the problems arising in several fields of the use and exploitation of outer space including practical applications. The main purposes of this study are to analyze the legal problems of geostationary orbital position, telecommunication, direct television broadcasting by uses of artificial satellites. Communication via artificial Earth satellites was one of the first applications of space technology and is now one of the most developed field. From the technical and economic standpoints the advantages of world-wide satellites communication system are too all obvious. However, as the practical uses of space technology become more freguent, the legal conflicts among nations have become more divisive. One of the problem grown in uses of artificial satellites is that of the increasing shortage of suitable orbital slot positions for satellites, especially in geostationary orbit. Legal status of geostationary orbit as a limited resourece have to be reviewed in consideration of the side effect of the "First use, first-served" principle. The geostationary orbit is to be used for the benifits of all mankind and to be guaranteed for each state institutionaly in order to have eguitable access to the use of the orbit. Rapid increase of satellites broadcasting system in not only developed countries but also in developing countries opened up new possibilities with one another's scientific and cultural achievements. But there is also a potential danger that this powerful new instrument of influencing public opinion will be abused. Such a danger incudes spill-over or harmful interference. This controversial issue brings about the question whether prior consent from the receiver nation is needed to broadcast across international boundaries. Some states have rejected prior consent because it interfere with the free flow of information. Many other countries have opposed that opinion as an invasion and violation of sovereignty and as a violation of the 1967 Treaty and the UN Charter. Since declaration of the First Year of Outer Space in 1985, our country have promoted the plan of launching communication and broadcasting satellites. With the Koreasat launched in 1995 as the start, a real satellite-telecommunication era was opened in korea. According to this new development of our country, there will also rise various legal problems related to satellite broadcasting and telecommunication such as the inflow of foreign programs, the permeation of culture and the infringement of program copyright. Consequently the effective reactions to these problems in satellite-communication era should be tried including international cooperation. It is therefore to take into careful consideration the legal issues which may arise in outer space activities and to formulate positive policy on international cooperation with surrounding or advanced countries and international organization concerned. For this purpose the United Nations also prepares the UNISPACE III in 1999, to enable the international community to meet a more promising 21st century.

  • PDF

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Interference Effect Analysis of Geostationary Orbit Link from Non-Geostationary Orbit Link (정지궤도 위성망과 비정지궤도 위성망간의 간섭영향 분석)

  • Kang, Chul-Gyu;Joung, Seung-Hee;Choi, Young-Seok;OH, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.919-923
    • /
    • 2009
  • In this paper, interference effect given from non-geostationary orbit link into geostationary orbit link is analyzed by BER performance curve. To analyse the interference effect with the angle between satellites, the angular separation is changed from $1^{\circ}$ to $8^{\circ}$, and the number of the satellite is also changed from 1 to 4 for analyzing it. From the result under those research environments, the interference effect into the geostationary orbit service is more increased according to the angular separation that is decreased. Especially, the small angle gives more interference effects to the geostationary orbit link. Furthermore, more number of interfering satellites gives more interference effect to the geostationary orbit link.

  • PDF

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF