• Title/Summary/Keyword: Geostationary Meteorological Satellite (GMS)

Search Result 14, Processing Time 0.027 seconds

PROBABILITY DISTRIBUTION OF SURFACE WAVE SLOPE DERIVED USING SUN GLITTER IMAGES FROM GEOSTATIONARY METEROLOGICAL SATELLITE AND SURFACE VECTOR WINDS FROM SCATTEROMETERS

  • Ebuchi, Naoto;Kizu, Shoichi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.615-620
    • /
    • 2002
  • Probability distribution of the sea surface slope is estimated using sun glitter images derived from visible radiometer on Geostationary Meteorological Satellite (GMS) and surface vector winds observed by spaceborne scatterometers. The brightness of the visible images is converted to the probability of wave surfaces which reflect the sunlight toward GMS in grids of 0.25 deg $\times$ 0.25 deg. Slope and azimuth angle required for the reflection of the sun's ray toward GMS are calculated for each grid from the geometry of GMS observation and location of the sun. The GMS images are then collocated with surface wind data observed by three scatterometers. Using the collocated data set of about 30 million points obtained in a period of 4 years from 1995 to 1999, probability distribution function of the surface slope is estimated as a function of wind speed and azimuth angle relative to the wind direction. Results are compared with those of Cox and Munk (1954a, b). Surface slope estimated by the present method shows narrower distribution and much less directivity relative to the wind direction than that reported by Cox and Munk. It is expected that their data were obtained under conditions of growing wind waves. In general, wind waves are not always developing, and slope distribution might differ from the results of Cox and Munk. Most of our data are obtained in the subtropical seas under clear-sky conditions. This difference of the conditions may be the reason for the difference of slope distribution.

  • PDF

The retrieval of Surface Solar Insolation using SMAC code with GMS-5 satellite data

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.458-461
    • /
    • 2005
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. However, ground base measurement stations installed pyranometer are often sparsely distributed, especially over oceans. In this study, Surface Solar Insolation is estimated using the visible and infrared spin scan radiometer(VISSR) data on board Geostationary Meteorological Satellite (GMS)-S covering from March 2001 to December 2001 in clear and cloudy conditions. To retrieve atmospheric factor, such as, optical depth, the amount of ozone, H20, and aerosol, SMAC (Simplified Method for Atmospheric Correction) code, is adopted. The hourly Surface Solar Insolation is estimated with a spatial resolution of $5km\;\times\;5km$ grid. The daily Surface Solar Insolation is derived from the available hourly Surface solar irradiance, independently for every pixel. The pyranometer by the Korea Meteorological Agency (KMA) is used to validate the estimated Surface Solar Insolation with a spatial resolution of $3\;\times\;3Pixels.$

  • PDF

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF

Development of an International Time Comparison System via GMS (정지기상위성을 이용한 국제시각비교시스템의 개발)

  • 이창복;이동두;정낙삼;장익수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1238-1246
    • /
    • 1992
  • We developed a time comparison system using the ranging signal of the geostationary meteorological satellite(GMS). By using the system time comparison between the KRISS(Korea Research Institute of Standards and Science) cesium atomic clock and the GMS ranging signal has been carried out and the results have shown that the precision of time comparison at KRISS is about 10 ns. For the more accurate measurements we calibrated the receiver delay time between KRISS receiver and CRL(Communications Research Laboratory) receiver by using the portable GMS receiver.

  • PDF

The Development of the Solar-Meteorological Resources Map based on Satellite data on Korean Peninsula (위성자료기반의 한반도 태양기상자원지도 개발)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.342-347
    • /
    • 2011
  • Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.

  • PDF

Estimation of Insolation over the Oceans around Korean Peninsula Using Satellite Data

  • Park, Kyung-Won;Kim, Young-seup;Sang, Chung-Hyo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.227-230
    • /
    • 1999
  • Surface solar radiation over the sea is estimated using Visible and Infrared Spin Scan Radiometer data onbord Geostationary Meteorological Satellite(GMS) 5 for January, 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of 5$\times$ 5 km grid. The island pyranometer belonging to the Japan Meteorological Agency is used for validation of the estimated insolation. It is shown that the estimated hourly insolation has RMSE(root mean square) error of 104 W/$m^2$. The variability of the hourly solar radiation was investigated on 3 areas over seas around Korean Peninsula. The solar radiation of East Sea is similar to Yellow Sea. The maximum value of solar radiation is on June of year. The maximum value in south sea is on August because weather is poor by low pressure and front in June

  • PDF

A PROJECT ON GLOBAL ENVIRONMENTAL SATELLITE DATABASE BASED ON NETWORKS

  • Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.296-298
    • /
    • 1999
  • Five institutions, which are very active in data utilization of environmental satellites NOAA and GMS, are connected via high speed networks to construct the databases based on the observations of A AVHRR (Advanced very High Resolution Radiometer) of NOAA satellite and VISSR (Visible and Infrared Scanning Radiometer) of GMS (Geostationary Meteorological Satellite) and to create scientific data sets for land, ocean and ,atmosphere. And vegetation index, sea surface temperature, cloud distribution maps and so on are generated by high speed and huge volume data Processing for studies on long term variations of land, ocean and atmosphere in Asia. In this paper the concept of this project and the activities at the Science University of Tokyo are briefly introduced

  • PDF

Estimation of the Sea Surface Radiation from GMS-5 Visible Data (GMS-5 가시영역 자료를 이용한 해면 일사량 추정)

  • Park, Kyung-Won;Kwon, Byung-Hyuk;Kim, Young-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Surface solar radiation over the sea is estimated using the visible and infrared spin scan radiometer (VISSR) data onboard Geostationary Meteorological Satellite(GMS)-5 from January 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of $5km{\times}5km$ grid. The island pyranometer operated by the Japan Meteorological Agency(JMA) is used to validate the estimated insolation. The root mean square error of the hourly estimated insolation is $104W/m^2$ with 0.91 of the correlation coefficient. In the variability of the hourly solar radiation investigated around the Korean Peninsula, the maximum value of solar radiation is found in June at the Yellow Sea and the East Sea, while in August at the South Sea because of low pressure conditions and front in June.

  • PDF

Development of Receiving and Image Provessing System of GMS/WEFAX Using PC(I) - Description of the System Hardwares - (PC를 이용한 GMS/WEFAX 수신 및 영상처리 시스템 개발(I) - 시스템 Hardware의 개요 -)

  • 윤기준;박경윤;서명석;조용민;남기용;김민수
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.21-35
    • /
    • 1993
  • In this study, an integrated GMS(Geostationary Meteorological Satellite) receiving ground system, which includes the real-time reception and image processing of WEFAX data, has been developed. The demodulator, PC demodulator, PC interface and application softwares of the system were made and integrated with the commercially available antenna and receiver. Hardwars of the system were described in this part. This system operates at IBM PC/AT or above. It can be used for students at school and for application research in the fields of meteorology, oceanography, hydrology and astronomy.

The 40~50Day Intraseasonal Oscillation of the Geostationary Meteorological Satellite High Cloud Amount (GMS 상층운량의 40~50일 계절만 진동)

  • 하경자;서애숙
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.619-633
    • /
    • 1996
  • Intraseasonal variability of the tropical convection over the Indian/western Pacific is studied using the Geostationary Meteorological Satellite high cloud amount. This study is directed to find the tropical-extratropical interaction in the frequency range of intraseasonal and interannual variabilities of the summer monsoon occured over the domain of 90E-171W and 495-50N. Especially, in order to investigate the intraseasonal interaction of last Asia summer monsoon associated with the tropical convections in the high cloud amounts, the spatial and time structure of the intraseasonal oscillation for the movement-and the evolution of the large-scale connections are studied. To describe the spatial and the time evolution, the extended empirical orthogonal function analysis is applied. The first mode may be considered to a normal structure, indicating that the strong convection band over 90E-120E is extended to sastward but this mode was detected as the intraseasonal variability during summer monsoon. It is found that the dominant intraseasonal mode of the tropical convection consists of the spatial changes over a broad period range centered around 40~50days.

  • PDF