• Title/Summary/Keyword: Geopung deposit

Search Result 1, Processing Time 0.014 seconds

Geopung Copper Deposit in Ogcheon, Chungcheongbuk-do: Mineralogy, Fluid Inclusion and Stable Isotope Studies (거풍구리광상: 산출공물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • The Geopung Cu deposit consists of two subparallel quartz veins that till the NE-trending fissures in Triassic Cheongsan granite. The quartz veins occur mainly massive with partially cavity and breccia. They can be followed along strike for about 500 m and varies in thickness from 0.2 to 2.2 m. Based on the mineralogy and paragenesis of veins, mineralization of quartz veins can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, quartz, chlorite, clay minerals and sulfides such as pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, stannite, chalcopyrite and galena. Supergene stage is composed of geothite. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of hypogene stage range from 163 to $356^{\circ}C$ and from 0.2 to 7.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur (${\delta}^{34}S$: 4.3~9.2‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen (${\delta}^{18}O$: 0.9~4.0‰) and hydrogen (${\delta}D$: -86~-69‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Geopung Cu deposit and then overlapped to some degree with another type of meteoric water during mineralization.