• Title/Summary/Keyword: Geophysical survey

Search Result 550, Processing Time 0.02 seconds

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

A Study on the Possibility of Construction Supervision by Geophysical Prospecting (지구 물리탐사에 의한 시공감리성 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.165-174
    • /
    • 1997
  • It is not possible to define the earth's interior because of it complicity. However, it can be interpreted directly and/ or indirectly. Geophysics is the subject of this study. To study the possibility of construction supervision by geophysical method, geophysical prospecting was performed and studied at the SamYang pumping well area in Cheju Island, where, although underground dam was constructed, the saline water invade the pumping well area. This study focuses on the construction supervision by electrical measurements. Two electric resistivity survey lines are installed in the pumping well site, and at each line electric survey was conducted at ebb and flow tides. To increase the data quality SP (self-potential) survey was also performed. As a result the geophysical exploration methods explained the defect of construction well, and It shows that geophysical probe can be a useful tool for the construction supervision.

  • PDF

Agricultural Geophysics in South Korea: Case Histories and Future Advancements (우리나라 농업 물리탐사: 적용 사례와 향후 과제)

  • Song, Sung-Ho;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.244-254
    • /
    • 2018
  • The first geophysical technique applied to the agricultural sector in Korea was electrical resistivity sounding and conducted in purpose of groundwater exploitation in the 1970s. According to the diversity of agricultural activities since the 1990s, various geophysical methods including electrical resistivity, electromagnetic induction, and self-potential method were applied to several agricultural fields such as soil characterization with saline concentration in vast reclaimed area, delineation of seawater intrusion regions in costal aquifer, safety inspection of embankment dikes with leakage problem, detection of ground subsidence from overpumping and tracing of groundwater aquifer contamination by leachate from livestock mortality burial or waste burial site. This paper introduces representative geophysical techniques that have been utilized in various agricultural fields and suggests several ways to develop the geophysical methods required for the precision agriculture field in the near future based on the past achievements.

Application and Analysis of Field Test and Geophysical Exploration for Dynamic Material Properties of Rockfill Dam (사력댐 동적물성 추정을 위한 현장조사기법 적용 및 분석)

  • Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.352-359
    • /
    • 2005
  • In this study, seismic refraction survey and MASW at dam crest and down-hole test and cross hole test in the boring holes located in dam crest through the core are performed to fin out dynamic material properties, are needed to evaluate dynamic safety of rockfill dam using dynamic analysis method. From the field test and geophysical exploration, applied such as above, p-wave and s-wave velocity profile of each layer of dam body. Dynamic material properties, such as elastic modulus, shear modulus, poissong's ration, are obtained from p-wave and s-wave velocity profile and density profile from formation density logging test.

  • PDF

An Interpretation of Hydrogeologic Structure Using Geophysical Data from Chungwon Area, Chungcheongbuk-Do (물리탐사자료를 이용한 수리지질구조 해석 -충청북도 청원지역)

  • 송성호;정형재;권병두
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2000
  • A set of geophysical survey results over an area in Bookil-myun, Chungwon-Gun, Chungcheongbuk-Do is presented; resistivity logging, d.c. sounding, dipole-dipole resistivity, and controlled-source magnetotelluric (CSMT) surveys. These surveys were chosen in this research for the estimation of the basement depth and the delineation of the hydrogeologic structure over the survey area. The results provide an optimal input to a hydrogeologic modeling analysis using the strategies built in GIS software. A total of 14 lines of dipole-dipole resistivity surveys, 25 stations of d.c. sounding and 6 stations of CSMT sounding were performed. In addition 10 boreholes were chosen for resistivity logging to correlate the logs to the surface data. A quantitative information on the hydrogeologic structure over the area is provided by synthesizing the results from various geophysical data and attribute layers are constructed by utilizing a GIS software Arc/ Info. The constructed layers match well to the hydrogeologic structures, which were outlined from the drilling data. The methodology tested and adopted in this study would be useful for providing a more reliable input to the hydrogeologic model setup.

  • PDF

Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea

  • Hwang Seho;Shin Jehyun;Park Inhwa;Lee Sangkyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.99-104
    • /
    • 2004
  • A combination of drilling, geophysical well logging, and electrical soundings was performed to evaluate seawater intrusion in Baeksu-eup, Youngkwang-gun, Korea. The survey area extends for over 24 $km^2$. To delineate the extent of seawater intrusion, 60 vertical electrical soundings (VES) have been carried out. Twelve wells were also drilled for the collection of hydrogeological, geochemical, and geophysical well logging data, to delineate the degree and vertical extent of seawater intrusion. To map the spatial distribution of seawater in this coastal aquifer, geophysical data and hydrogeochemical results were used, and the relation between the resistivity of groundwater and equivalent NaCl concentration was found. Layer parameters derived from VES data, various in-situ physical properties from geophysical well logging, and the estimated equivalent NaCl concentration were very useful for quantitative evaluation of seawater intrusion. Our approach for evaluating seawater intrusion can be considered a valuable attempt at enhancing the use of geophysical data.

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Detecting buried human remains using near-surface geophysical instruments

  • Powell Kathryn
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.88-92
    • /
    • 2004
  • To improve the recovery rate of unlocated buried human remains in forensic investigations, there is scope to evaluate and develop techniques that are applicable to the Australian environment. I established controlled gravesites (comprising shallow buried kangaroos, pigs, and human cadavers) in South Australia, to allow the methodical testing of remote sensing equipment for the purpose of grave detection in forensic investigations. Eight-month-old pig graves are shown to provide more distinct identifying results using ground-penetrating radar when compared to four-year-old kangaroo graves. Two further aspects of this research are presented: information (obtained from a survey) relating to the police use of geophysical instruments for locating buried human remains, and the use of electrical resistivity for locating human remains buried in a coffin. The survey of Australian police jurisdictions, covering the period 1995-2000, showed that police searches for unlocated bodies have not successfully located human remains using any geophysical instruments (such as ground-penetrating radar, magnetometers, or electrical resistivity). Lower resistivity readings were found coincident with the 150-year-old single historical burial in a heavily excavated field, in a situation where its exact location was previously unknown.

A Geophysical Study on Site Characteristics of the Western Pagoda of the Mireuksa Site, Iksan, Korea (익산미륵사지 지반특성에 대한 지구물리학적 연구)

  • Je-Ra-
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • A number of tangible cultural properties have been left to suffering damage without any scientific conservation or maintenance. We conducted nondestructive geophysical explorations around the Western pagoda of the Iksan Mireuksa Temple for the purpose of preparing the counterplan of its conservation and maintenance and of utilizing the geophysical information for the design of repair. Geophysical image of the shallow subsurface around the construct resulting from electric resistivity, seismic refraction, and GPR methods carried out along 6 lines in the site was used to investigate the relationship between the foundation characteristics and the structural safety. Tilting of the pagoda southwest towards seems to result from the low resistivity zones found in the southwestern part. The GPR and seismic surveys revealed a boundary at depth of 3.3~3.5m dividing into two layers, compacted overlaid soil and the original ground. The boundary appears to dip southwest. The artificial layer as a foundation does not covers as much as the bottom area of the pagoda. This top soil dipping southwest seems to result in tilting of foundation southwestward towards. Our geophysical result suggests ground reinforcement in the western part of the survey area for the conservation of the construct.

  • PDF

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area (물리탐사 기술의 지반침하지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Young-Soo;Park, Sam-Gyu;Yi, Myeong-Jong;Son, Jeong-Sul;Lim, Heong-Rae;Jeong, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.376-383
    • /
    • 2005
  • In this study, we conducted geophysical investigations for the organization of integrated geophysical methods to detect underground cavities of ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. Underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect underground cavities. Furthermore, we could map the distribution of cavities more precisely with the test results incorporated from the various geophysical methods. It is also important to notice that the microgravity method is a very promising tool since it has rarely used for the cavity detection in korea. Beyond the investigation of underground cavities, the geophysical methods are required to provide useful information for the reinforcement design for the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical technique incorporating different geophysical methods to precisely map underground cavities and image the subsurface of the ground subsidence areas.

  • PDF