• Title/Summary/Keyword: Geometry Difference

Search Result 463, Processing Time 0.028 seconds

A Study on the Flow characteristics of Wells Turbine for Wave Power Conversion by Various Flap Shape (파력발전용 웰즈터빈의 Flap형상변화에 따른 유동 특성에 관한 연구)

  • Kim, Dong-Kyun;Choi, Gab-Song;Kim, Jeong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries to disign the double flap of Wells turbine with the numerical analysis.

Effect of Quantity of Working Fluid on Performance of a Heat Pipe (히트 파이프의 작동유체 충전량이 성능에 미치는 영향)

  • Shin, D.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.313-318
    • /
    • 1989
  • Experiments have been performed to find an optimum filling quantity of working fluid in a heat pipe. The optimum operation has been defined to give a minimum temperature difference between evaporator and condenser. The experimental results show that there exists an optimum filling quantity which is slightly smaller than that calculated by the well known formula from the geometry of the wick. When the concaved vapor-liquid interface at the wick is taken into account to calculate the required quantity of working fluid, the computed value agrees with the experimentally determined quantity.

  • PDF

Morphable model to interpolate the difference between the number of pixels and the number of vertices (픽셀 수와 정점들 간의 현격한 차이를 보완하는 Morphable 모델)

  • Ko, Bang-Hyun;Hong, Tae-Hwa;Lee, Jong-Won;Moon, Hyeon-Joon;Kim, Yong-Guk;Moon, Seung-Bin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.111-114
    • /
    • 2006
  • This paper presents Morphable Model Construction which is based GeometriX tool processing various data array such as texture space and geometry(shape space) in order to reduce calculation cost due to rapid advancement of face recognition speed. It introduces efficiently vertex and pixel reduction for raw data, which is based GeometriX tool using stereo scan.

  • PDF

In-Cylinder Flow Characteristics of a Lean Burn Engine under Steady Conditions for Different Port Shapes (포트형상에 따른 정상상태 조건하에서의 희박엔진 연소실내의 유동특성)

  • 박상봉;이은현;유정열;이준식;최해천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-33
    • /
    • 1998
  • An experimental study has been conducted for the three-dimensional in-cylinder swirl flow under steady conditions. Velocity fields are measured by using an LDV at various valve lifts. Effects of geometry of inlet ports on swirl flows are investigated for standard and helical ports. Swirl distributions evaluated from velocity measurements are compared with those obtained from an impulse torque swirl meter. Results show that the helical port generates more intensive swirl than the standard one but it causes red- uction in air flow coefficient. At the lower valve lift, no significant difference is observ- ed in non-dimensional swirl values between two ports because of limited pre-swirl effect, while it becomes significant as the valve lift increases.

  • PDF

Thermomechanical Analysis of Functionally Gradient Al-$SiC_{p}$ Composite for Electronic Packaging (전자패키지용 경사조성 Al-$SiC_{p}$ 복합재료의 열 . 기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.175-183
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with shan interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces and etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed fur the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the Al-$SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Inverse Design Method of Supersonic wings Using Intergral Equations (적분방정식을 이용한 초음속 날개의 역설계법)

  • Jeong, Sin Gyu;Kim, Gyeong Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A practical design method for supersonic wings has been developed. The method is based on Takanashi's method that uses integral equations and iterative "residual-correction" concept. The geometry correction is calculated by solving linearized small perturbation equation (LSP) with the difference between garget and objective surface pressure distributions as a boundary condition. In the present method, LSP equation is analytically transformed to integral equations by using the Green's theorem. Design results of an isolated wing and wing-nacelle configurations are presented here.

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

Technique to reinforce the structure using the sensitivity information (민감도 정보를 이용한 구조물의 내구보강 기법)

  • Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.474-478
    • /
    • 2008
  • In this paper, the technique to reinforce the structure using the sensitivity information is proposed. Design variables related to the geometry of structure at fatigue fracture points are determined and sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated. Then the vector composed of gaps between the target life and initial life cycles at fracture points is calculated. The linear algebraic equation to solve the variation of design variables is composed. From the equation, the design variables for reinforced structure are determined.

  • PDF

Stiffness and Damping Characteristics of Herringbone Grooved Air Journal Bearings (헤링본 공기 저널 베어링의 강성 및 감쇠 특성에 관한 연구)

  • Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.283-290
    • /
    • 2010
  • In this study, the stiffness and damping coefficients of herringbone grooved air journal bearings are studied. A generalized coordinate transformation method to handle the complex geometry of incompressible fluid bearing is modified for compressible fluid. The modified equations are discretized by the base of finite difference method. A new computer program using Visual C++ language is developed. The load carrying capacity and stiffness and damping coefficients are calculated according to the design parameters like groove depth or the number of grooves and compared to that of plain air journal bearings.

Experimental Investigation For Various Propeller Tunnel Geometry Effect On Propulsion Performance (프로펠러 보호터널 형상이 추진성능에 미치는 영향에 대한 실험적 고찰)

  • Suh, Sung-Bu;Park, Choong-Hwan;Moon, Il-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.40-45
    • /
    • 2007
  • This study was performed to investigate the effect of various propeller tunnel shapes on the propulsion performance of a fishing boat. The propeller tunnel reduces the problem resulting from the open propeller accidentally catching the waste net and cable on the sea, as well as increasing the cruising speed. For 3 different tunnel geometries, the model test is conducted in the circular water channel, and the potential based panel method was applied to analyze the hydrodynamic characteristics of propeller. Also, both results are compared with each other to represent the difference between results of the model scale test and the potential theory. It is expected that these results could be referenced in the design of the propeller tunnel in consideration of the hydrodynamic interaction between the propeller and the tunnel.