• 제목/요약/키워드: Geometrical thickness

검색결과 305건 처리시간 0.028초

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

Study on the Geometrical Properties of Brown Rice on Shape Factors

  • Ning, Xiao Feng;Kang, Tae-Hwan;Kim, Oui-Woung;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.90-99
    • /
    • 2012
  • Purpose: This study was conducted to investigate the optimal sorting factors in establishing an efficient sorting technology for brown rice. Methods: The brown rice varieties used in this study were Il Pum, Chu Cheong, Dong Jin, Un Gwang, Nam Pyeong, and Dae An. These were classified into whole grain, unriped grain, and green dead rice. The shape factors were analyzed based on length, width and thickness of the grains. Results: The results revealed that the maximum length among whole grain, unriped grain, and green dead rice was observed in Dae An variety while Chu Cheong variety showed the minimum. Further more, Il Pum brown rice showed the maximum width while Dong Jin variety showed the minimum. In the case of thickness, the maximum was observed in Un Gwang variety and that of the minimum among Nam Pyeong variety for both whole grain and unriped grain. Conclusions: The length and width can be used as determinants in sorting factors of whole grain and green dead rice, and the thickness can be considered as optimum sorting factor of whole grain and unriped grain.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

전자기 성형에 의한 알루미늄 합금관과 폴리우레탄봉의 접합연구 (A Study on Electromagnetic Joining of Aluminum Tubes to Polyurethane Cores)

  • 김남환;손희식;황운석;이종수
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.66-74
    • /
    • 1992
  • The joining processes of aluminum alloy tubes and polyurethane cores by electromagnetic impulsive compression are studied. The influences of various geometrical factors (the length of joined part, the thickness of tube, and the clearance between tube and core) and the process factors(the discharged energy and the number of discharge)are examined experimentally and discussed. And the magnetic pressure in metal/polymer joining is calculated and is compared to the pressure in metal/metal joining. The following results are obtained: (1) The joining strength is dependent upon the residual radial strain of the polyurethane cores. (2) The joining strength increases as discharged energy and the number of discharge increase, but decreases as the clearance, thickness and joining length of tube increases. (3) In the case of metal/polymer joining energy loss is increased and the value of magnetic pressure is less than that in the case of metal/metal joining.

  • PDF

초음파리니어 모터의 설계 및 해석 (Design and FEM Analysis of Ultrasonic Linear Motor)

  • 김행식;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.728-731
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. A linear ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory ANSYS was used to analyze the resonance frequency and the displacement of the stator vibrator. The resonance frequency of the motor provides the elliptical motion. and ANSYS was used to analyze elliptical motion and elliptical trajectory of stator vibrator when thickness of piezoelectric ceramics was varied respectively 0.763, 1.526, 2.289[mm] and width of stator vibrator was varied respectively 16, 12, 8, 4[mm]. When thickness of piezoelectric ceramics was decreased, the displacement of the stator vibrator was increased. And when width of stator vibrator was decreased, the displacement of the stator vibrator was increased.

  • PDF

물림조건에 따른 경화강의 절삭저항 특성에 관한 연구 (A Study on the Cutting Resistance Characteristics of Hardended Steel according to Engagement Condition)

    • 한국생산제조학회지
    • /
    • 제5권3호
    • /
    • pp.58-65
    • /
    • 1996
  • This thesis is concerned with the study on the characteristics of the cutting resistance occurring in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool with nose radius. For the purpose, the shape of cutting cross-section made at nose part of the tool was analyzed geometrically and the wear mechanism on the flank face of the ceramic tool is investigated. In order to investigate the characteristics of cutting resistance two categories of cutting conditions are suggested, along with geometrical analysis. One category includes the conventional cutting parameters such as feed and depth of cut, another containing new cutting parameters of thickness of cut and width of cut etc. Thickness of cut width of cut and area of undeformed chip section formed by the condition of engagement between workpiece and cutting tool are determined as the function of feed, depth of cut and nose radius of cutting too, And an effective approach angle is determined by depth of cut and nose radius.

  • PDF

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.

렌즈 성형용 유리탄소 금형의 초정밀연삭 (Ultraprecision Grinding of Glassy Carbon Core for Mold Press Lens)

  • 황연;차두환;김정호;김혜정
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.261-265
    • /
    • 2012
  • In this study, glassy carbon was ground for lens core of glass mold press. Ultraprecision grinding process was applied for machining of core surfaces. During the process, brittle crack occurred because of hard-brittleness of glassy carbon. Author investigated optimized grinding conditions from the viewpoint of ductile mode grinding. Geometrical undeformed chip thickness was adopted for critical chip thickness that enables crack free surface. Machined cores are utilized for biaspheric glass lens fabrication and surfaces of lens were compared for verification of ground surface.

타원형 디프 드로잉 공정에서 블랭크의 기하학적 형상에 관한 연구 (A Study on the Geometrical shape of Blank in Elliptical Deep Drawing)

  • 박동환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.146-150
    • /
    • 2000
  • there are a lot of process variable exerted influence on the formability of products in deep drawing process. Particularly it is important that blank shape of the process variables. A paper to be connected with process variables of elliptical deep drawing products is insufficient the actual circumstances enough though researches have been performed on the deep drawing of sheet metal forming. In this study The effects of thickness distribution and movement of sheet are grasped as alteration of blank shapes in the process of elliptical deep drawing product and then optimal blank shape was presented. They were verified by the finite element analysis (FEA) and experiment.

  • PDF

콘크리트충전(充塡) 각형강관(角形鋼管) 기둥과 H형강 보 접합부(接合部)의 비선형 유한요소해석 (A Nonlinear FEM Analysis of Connections Between Concrete Filled Steel Tube Columns and H-Beams)

  • 윤현도;김용철;김옥룡;이훈희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.209-218
    • /
    • 2003
  • The analytical studies included nonlinear finite element analysis of split-tee connection details subjected to axial load and lateral load. A three-dimensional model of the connections between CFT columns and H-beams has been developed. Both initial geometrical imperfections and residual stresses are taken into consideration. A geometrically nonlinear load-displacement analysis of the structure containing the imperfection is then performed, using the Riks method. Analytical results are compared with existing experimental results. Extensive parametric analyses are carried out to investigate the relation of the connections between CFT columns and H-beam to various parameters such as the axial load, column width-thickness ratio, and split-tee thickness.