• Title/Summary/Keyword: Geometrical tasks

Search Result 24, Processing Time 0.02 seconds

Two-Arm Cooperative Assembly Using Force-Guided Control with Adaptive Accommodation (적응 순응성을 갖는 힘-가이드 제어 기법을 이용한 두 팔 로봇 협동 조립작업)

  • Choi, Jong-Dho;Kang, Sung-Chul;Kim, Mun-Sang;Lee, Chong-Won;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 2000
  • In this paper a new two-arm cooperative assembly(or insertion) algorithm is proposed. As a force-guided control method for the cooperative assembly the adaptive accommodation controller is adopted since it does not require any complicated contact state analysis nor depends of the geometrical complexity of the assembly parts. Also the RMRC(resolved motion rate control) method using a relative jacobian is used to solve inverse kinematics for two manipulators. By using the relative jacobian the two cooperative redundant manipulators can be formed as a new single redundant manipulator. Two arms can perform a variety of insertion tasks by using a relative motion between their end effectors. A force/torque sensing model using an approximated penetration depth calculation a, is developed and used to compute a contact force/torque in the graphic assembly simulation . By using the adaptive accommodation controller and the force/torque sensing model both planar and a spatial cooperative assembly tasks have been successfully executed in the graphic simulation. Finally through a cooperative assembly task experiment using a humanoid robot CENTAUR which inserts a spatially bent pin into a hole its feasibility and applicability of the proposed algorithm verified.

  • PDF

Teaching Proportional Reasoning in Elementary School Mathematics (초등학교에서 비례 추론 지도에 관한 논의)

  • Chong, Yeong Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.21-58
    • /
    • 2015
  • The aim of this study is to look into the didactical background for teaching proportional reasoning in elementary school mathematics and offer suggestions to improve teaching proportional reasoning in the future. In order to attain these purposes, this study extracted and examined key ideas with respect to the didactical background on teaching proportional reasoning through a theoretical consideration regarding various studies on proportional reasoning. Based on such examination, this study compared and analyzed textbooks used in the United States, the United Kingdom, and South Korea. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: giving much weight on proportional reasoning, emphasizing multiplicative comparison and discerning between additive comparison and multiplicative comparison, underlining the ratio concept as an equivalent relation, balancing between comparisons tasks and missing value tasks inclusive of quantitative and qualitative, algebraic and geometrical aspects, emphasizing informal strategies of students before teaching cross-product method, and utilizing informal and pre-formal models actively.

The influence of disc wear on the behavior of the temporomandibular joint: a finite element analysis in a specific case

  • Duarte, Ricardo J.;Ramos, Antonio;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • The aim of this study was to evaluate the influence of disc thickness on the normal behavior of the temporomandibular joint. Based on a specific patient case, CT scan images showing accentuated wear in the right disc were reconstructed and the geometrical and finite element model of the temporomandibular joint structures (cranium, mandible, articular cartilages and articular discs) was developed. The loads applied in this study were referent to the five most relevant muscular forces acting on the temporomandibular joint during daily tasks such as talking or eating. We observed that the left side structures of the temporomandibular joint (cranium, mandible and articular disc) were the most affected as a consequence of the wear on the opposite articular disc (right side). From these results, it was possible to evaluate the differences in the two sides of the joint and understand how a damaged articular disc influences the behavior of this joint and the possible consequences that can arise without treatment.

Automation of Fatigue Durability Analysis for Welded Bogie Frame Using a Multi-Agent Based Engineering Framework (멀티 에이전트 기반 엔지니어링 프레임워크를 이용한 용접대차틀 피로내구해석의 자동화)

  • Bang, Je-Sung;Han, Seung-Ho;Lee, Jai-Kyung;Park, Seong-Whan;Rim, Chae-Whan;Song, See-Yeob
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.308-320
    • /
    • 2007
  • A multi-agent and web based engineering framework concerning the automation of fatigue durability analysis for welded bogie frame of railway vehicles is presented. Mostly, this kind of design or analysis includes complex workflow, huge amounts of information processing, and problem solving. Macro programs of I-DEAS, APDL of ANSYS, and in-house fatigue code are utilized for parametric geometry representation, automatic mesh generation, static stress analysis, fatigue durability analysis, post-processing, and data sorting. The engineering framework is implemented on the JADE. Since every task requires a fairly complex process and specialized knowledge, the multi-agent based framework is very useful to keep the independency among several disciplines or tasks and to use distributed hardware and software resources. All engineering programs are integrated by XML wrapper. Related database of the engineering framework and web based user interfaces are also developed. A parametric study is carried out to take into account the effect of geometrical change of transom support bracket on its cumulative fatigue damage. The developed engineering framework reduced remarkably the time and costs required in designing and solving engineering problems.

A Study on Object Tracking for Autonomous Mobile Robot using Vision Information (비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구)

  • Kang, Jin-Gu;Lee, Jang-Myung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • An Autonomous mobile robot is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this position estimation, a method of determining an optimal path for the autonomous mobile robot from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a mobile robot. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the autonomous mobile robot.

  • PDF

Revisiting Logic and Intuition in Teaching Geometry: Comparing Euclid's Elements and Clairaut's Elements (Euclid 원론과 Clairaut 원론의 비교를 통한 기하 교육에서 논리와 직관의 고찰)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.34 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • Logic and intuition are considered as the opposite extremes of teaching geometry, and any teaching method of geometry is to be placed between these extremes. The purpose of this study is to identify the characteristics of logical and intuitive approaches for teaching geometry and to derive didactical implications by taking Euclid's Elements and Clairaut's Elements respectively representing the extremes. To this end, comparing the composition and contents of each book, we analyze which propositions Clairaut chose from Euclid's Elements, how their approaches differ in definitions, proofs, and geometrical constructions, and what unique approaches Clairaut took. The results reveal that Clairaut mainly chose propositions from Euclid's books 1, 3, 6, 11, and 12 to provide the contexts that show why such ideas were needed, rather than the sudden appearance of abstract and formal propositions, and omitted or modified the process of justification according to learners' levels. These propose a variety of intuitive strategies in line with trends of teaching geometry towards emphasis on conceptual understanding and different levels of justification. Specifically, such as the general principle of similarity and the infinite geometric approach shown in Clairaut's Elements, we could confirm that intuition-based geometry does not necessarily aim for tasks with low cognitive demand, but must be taught in a way that learners can understand.

Activation Differences of Superior Parietal Lobule and Cerebellum Areas While Inferring Geometrical Figures per Intellectual Category in Adolescents (도형 과제 수행 때 나타나는 청소년의 지능별 대뇌 및 소뇌의 활성도 차이 분석)

  • Kim, Ye Rim
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.637-648
    • /
    • 2013
  • The relationship between the cerebral cortex and human intelligence has been studied using various methods, and related brain areas involved in intellectual manifestation have been discovered individually. Such studies have also shown the cerebellum is closely involved in various cognitive functions such as language, memory, and information processing. However, studies showing an activity difference between the cerebral cortex and cerebellum when performing specific tasks are hard to find. This study searched and analyzed the active regions of the cerebral cortex and cerebellum seen while performing the inference of geometrical figures. A WAIS intelligence test was conducted using 81 healthy boys (16.3 years of age on average), and five categories were classified. While performing the inference of shapes, their brain images were taken using functional magnetic resonance imaging (fMRI). As a result, the activity in 12 brain regions was observed, including in the cerebral cortex, the bilateral inferior parietal, the visual cortex, bilateral superior parietal, frontal-Inf-Tri-R, and bilateral caudate, while activities in 5 discrete areas were seen in the cerebellum. In particular, the higher the intelligence (IQ) of the subject, the stronger their activity. Among those with the most superior intelligence, subjects with an IQ of 140-147 showed significantly higher activity compared to the other groups. Such results seem to represent a very high utilization of intelligence in a highly gifted group, and we can expect to use this to determine the super gifted.

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.

Task Performance of a Mobile Manipulator using Cost Function and Vision Information (가격 함수 및 비젼 정보를 이용한 이동매니퓰레이터의 작업 수행)

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.345-354
    • /
    • 2005
  • A mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this Position estimation, a method of determining an optimal path for the mobile manipulator from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the mobile manipulator.

  • PDF