• Title/Summary/Keyword: Geometrical relations

Search Result 85, Processing Time 0.024 seconds

Analysis of Binodal Structures of Final State Distributions in Vibrational Predissociations of Triatomic van der Waals Molecules

  • 이천우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1193-1203
    • /
    • 1995
  • In this work, we focused on the setup of the tools for the analysis of the final rotational state distribution of photofragments in vibrational predissociations of triatomic van der Waals molecules A-B2. We found that reflection principle used for the direct photodissociation processes can also be applied to find out the final rotational state distributions for indirect photodissociation processes. The quantity which represents the strength of rovibrational coupling between the quasi-bound state and the final state is reflected into the mirror of the classical angular momentum function, instead of the initial state before light absorption used in the reflection principle of direct processes. The sign change in the first derivative of the interaction potential with respect to the bond distance of B2 is found to be the source of the binodal structures in the final rotational distributions of photofragments in the model system studied in this work. In MQDT analysis, short range eigenchannel basis functions were found to be localized in angle, in the previous work [Lee, C.W. Bull. Korean Chem. Soc. 1995, 16, 957.] and may be called angle functions. Angle functions enjoy simple geometrical structures which have simple functional relations with the final state distributions of photofragments. Two processes take place along the angle functions which resemble the quasi-bound state and dominate over other processes. Two such angle functions are found to be not only localized angularly but also localized either one of ends of B2 in motions along the bond of B2. These dominating photodissociation processes, however, cancel each other. This cancellation causes photodissociation to depend sensitively on the interaction potential at other angles than the dominant one. Part of potential surface where much larger torque exists can now play an important role in photodissociation. MQDT also enables us to see which processes play important roles after cancellation. This is done by examining the amounts of time delayed by asymptotic eigenchannels.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

A Comparative Study on the Change in Oriental Linked pearls Pattern (동전(東傳) 연주문의 변천과정 비교연구 -5세기~10세기 벽화복식 및 출토 직물을 중심으로-)

  • An, Bo-yeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.243-270
    • /
    • 2007
  • Linked pearls pattern expressed on textiles have no limited scale or shape when manufacturing, so they are free in expression. And from the design, material, and color we can analogize the social culture of that age. Oriental linked pearls pattern was started from the Sasanian Persia and introduced through the Silk Road, so it is closely connected with the East and the West culture. This study will consider from the 5th century to the 10th century; the mural costume of the West Central Asia, the ancient textiles excavated from the Sinjiang and Qinghai area of China, and the linked pearls pattern which are collected at Shosoin, Japan. And from this study, will concentrate on clarifying the linked pearls pattern's condition of the cultural exchange between the East and the West and it's structural variation process. The design of linked pearls pattern delivered to the East through the Silk Road is differed by area. For example, in the Western Pamir Plateau, where the ancient Sogdians mainly lived, the excavated linked pearls pattern's subject were deer or cassowary variated from the West Asian motif. But the ones excavated from Kucha Xingang had Chinese motifs added so they showed Chinese characters or Buddhist Bodhisattva image instead of Helios. Like this, the appearance of new patterns, which were accompanied by structural variations, gradually deviated from the standardized pattern of the Sasanian Persia. And this structural variation process has relations with the construction and arrangement method of various patterns of the after ages. The foliated floral Spray, which is placed at the lozenge space of linked pearls' space, had developed into ogival - shaped pattern (Neunghwamun). And the prevalence of geometrical structure pattern after the 10th century and the unfolding method of Tapjamun which is arranging unit pattern in order, are similar to the linked pearl pattern. In brief, linked pearls pattern accompanied by technical improvement let us understand the polished artistic code from its expression, and has importance in showing universal pattern beyond region and culture.