• Title/Summary/Keyword: Geometrical effect

Search Result 585, Processing Time 0.025 seconds

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

A Numerical Study on the Effect of Initial Shape on Inelastic Deformation of Solder Balls under Various Mechanical Loading Conditions (다양한 기계적 하중조건에서 초기 형상이 솔더볼의 비탄성 변형에 미치는 영향에 관한 수치적 연구)

  • Da-Hun Lee;Jae-Hyuk Lim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.50-60
    • /
    • 2023
  • Ball Grid Array (BGA) is a widely used package type due to its high pin density and good heat dissipation. In BGA, solder balls play an important role in electrically connecting the package to the PCB. Therefore, understanding the inelastic deformation of solder balls under various mechanical loads is essential for the robust design of semiconductor packages. In this study, the geometrical effect on the inelastic deformation and fracture of solder balls were analyzed by finite element analysis. The results showed that fracture occurred in both tilted and hourglass shapes under shear loading, and no fracture occurred in all cases under compressive loading. However, when bending was applied, only the tilted shape failed. When shear and bending loads were combined with compression, the stress triaxiality was maintained at a value less than zero and failure was suppressed. Furthermore, a comparison using the Lagrangian-Green strain tensor of the critical element showed that even under the same loading conditions, there was a significant difference in deformation depending on the shape of the solder ball.

A Study on Soviet Constructive Fashion in 1920s (1920년대 소비에트 구성주의 패션에 관한 연구)

  • 조윤경;금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.36
    • /
    • pp.183-203
    • /
    • 1998
  • The wave of Avant-garde swept away all in the unique social background so called 'October Revolution' and the early 1900 Russian society which was able to absorb and accept anything. The Russian avant-garde has been affected by the Cubism and the Futurism those had peculiarly appeared in the early twentieth century, spreaded out to three spheres: the Suprematism, the Rayonism and the Constructivism. The Russian Constructivism has appeared in this background, concretely and ideally ex-pressed the ideology of the revolution into the artistic form and made an huge influence to the whole Russian society. The Constructivist like Tatlin, naum Gabo, Pevaner, Rodchenko, Stepanova, Popova and Exter gave great effect on the Soviet Constructive fashion design in 1920's after the Revolution. The Soviet costume in 1920s hold in common the characteristicss of the Constructive graphic as it is, geometrical and abstractive form, energetic and motility. In fashion design, these graphic qualities have been showed as the application of geometrical form and architectural image, physical distortion and transformation. And in textile design, the simple, dynamical presentation has been appeared. We can classify the Soviet costume at this time into three occasions. The first term is from late 1910 th mid 1920, and it is altered from folk costume design to modern one. With Lamanova as the first on the list, using the folk mitif, the Constructive expression of simple form has been gradually revealed in design. Designers like Makarova, Pribylskaia and Mukhina produced the plane, simple chemise style with the decoration of the Russian traditional motif. From early to late 1920 is the second term, and it is at the pick of the most active processing of the Constructive design. Not only at the costume in daily life but also at the theatrical costume and textile, the con-structive design has been represented all avail-able fields. Many Constructivists including Stepanova, Popova, Exter and Rodchenko took part in the textile design and costume design so as to evlvo their aesthetic concept. The third term is from late 1920 to early 1930. The socialistic realism has dominated over the whole culture and art, the revolutionary dynamic motif has been presented also in textile design. The formative features of Soviet Constructive fashion design are; silhouette, from, motif, color and fabric. The first, the silhouette : a straight rectangular silhouetted has been expressed through the whole period and a volumed one with distorted human body shape has introduced in the theatrical costume design. The second, the form: many lengthened rectangular forms have been made at beginnings, but to the middle period, geometrical, architectural forms have been more showed and there are energy and movement in design. At the last period, only a partial feature-division has been seen. The third, the motif; no pattern or ethnic motif has been partly used at beginnings, a figure like circle, tri-angle has gradually appeared in textile design. At latter period, a real-existent motif like an airplane has been represented with graphing and simplicity. The fourth, the color ; because of insufficient dyeing, neutral color like black or grey color has been mainly covered, but after middle term, a primary color or pastel tone has been seen, contrast of the fabric; without much development of textile industry after the Revolution, thick and durable fabrics have been the main stream, but as time had going to the last period, fabrics such as linen, cotton, velvet and silk have been varously choesn. At the theatrical costume, new materials like plastics and metals that were able to accentuate the form. The pursuit of popularity, simplicity and functionalism that the basic concept of Constructive fashion is one of the "beauty" which has been searching in modern fashion. And now we can appreciate how innovative and epochal this Soviet Constructive fashion movement was.ement was.

  • PDF

A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method (MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.583-590
    • /
    • 2016
  • This paper presents a dynamic crack propagation algorithm with Rayleigh damping effect based on the MLS(Moving Least Squares) Difference Method. Dynamic equilibrium equation and constitutive equation are derived by considering Rayliegh damping and governing equations are discretized by the MLS derivative approximation; the proportional damping, which has not been properly treated in the conventional strong formulations, was implemented in both the equilibrium equation and constitutive equation. Dynamic equilibrium equation including time relevant terms is integrated by the Central Difference Method and the discrete equations are simplified by lagging the velocity one step behind. A geometrical feature of crack is modeled by imposing the traction-free condition onto the nodes placed at crack surfaces and the effect of movement and addition of the nodes at every time step due to crack growth is appropriately reflected on the construction of total system. The robustness of the proposed numerical algorithm was proved by simulating single and multiple crack growth problems and the effect of proportional damping on the dynamic crack propagation analysis was effectively demonstrated.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

The Characteristics of Piezoelectric Transformer for Driving CCFL (CCFL 구동용 압전 변압기의 특성)

  • Jeong, Su-Hyun;Lee, Jong-Sub;Hong, Jong-Kuk;Chae, Hong-In;Yoon, Man-Soon;Lim, Kee-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.259-264
    • /
    • 2000
  • In this paper, the characteristics of piezoelectric transformer is studied for driving CCFL(Cold Cathode Fluorescent Lamp). In order to investigate the effects of geometrical dimensions, λvibration-mode type piezoelectric transformers with different sizes in the length(l), width$(\omega)$ and thickness(t) are made of ceramics with PZT-PMWS compositions. The increases in temperature and aging effect are also measured in the transformer of PT-3 sample under the condition of operation continuously for 10 hrs. As the results of dimensional effects, the output power and voltage step-up ratio are largely affected by the ratio of length to thickness(l/t) rather than that of length to $width(l/\omega)$. The output power and step-up ratio are increased with increasing l/t. On case of PT-3, the output voltages are 510[Vrms] at 36[Vrms] in input voltage, $100[k\Omega]$ in load resistance. Temperature increases and variation of output voltages are $10[^{\circ}C]$ and less than 5[%], respectively.

  • PDF

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.