• 제목/요약/키워드: Geometrical effect

검색결과 585건 처리시간 0.02초

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.273-288
    • /
    • 2024
  • The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Nonlinear low-velocity impact of graphene platelet-reinforced metal foam beam with geometrical imperfection

  • Yi-Han Cheng;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.609-620
    • /
    • 2024
  • The impact problem of imperfect beams is crucial in engineering fields such as water conservancy and transportation. In this paper, the low velocity impact of graphene reinforced metal foam beams with geometric defects is studied for the first time. Firstly, an improved Hertz contact theory is adopted to construct an accurate model of the contact force during the impact process, while establishing the initial conditions of the system. Subsequently, the classical theory was used to model the defective beam, and the motion equation was derived using Hamilton's principle. Then, the Galerkin method is applied to discretize the equation, and the Runge Kutta method is used for numerical analysis to obtain the dynamic response curve. Finally, convergence validation and comparison with existing literature are conducted. In addition, a detailed analysis was conducted on the sensitivity of various parameters, including graphene sheet (GPL) distribution pattern and mass fraction, porosity distribution type and coefficient, geometric dimensions of the beam, damping, prestress, and initial geometric defects of the beam. The results revealed a strong inhibitory effect of initial geometric defects on the impact response of beams.

Investigation of equivalent spherical bubble diameter at high inlet velocity pool scrubbing conditions

  • Erol Bicer;Soon-Joon Hong;Hyoung Kyu Cho
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4307-4326
    • /
    • 2024
  • This study investigates Equivalent Spherical Diameter (ESD) estimation at high inlet velocity pool scrubbing conditions using the Interfacial Area Transport Equation (IATE) diameter model including bubble-induced turbulence and interphase modeling. The compatibility of area-averaged Sauter Mean Diameter (SMD), areaaveraged Local Equivalent Diameter (LED) and void-weighted area-averaged LED approaches to estimate the ESD are explored and the proposed model is validated against available experimental data. The study reveals that the prevalent constant ESD assumption in pool scrubbing codes is not universal by showcasing a decreasing trend along the column due to intensive bubble breakup. The area-averaged LED approach fails to capture this trend, while the area-averaged SMD and void-weighted area-averaged LED approaches provide accurate estimations aligned with experimental data. Turbulence parameters, interfacial forces, and diameter modeling are identified as crucial for accurate predictions of flow and geometrical variables by setting up the OpenFOAM framework. A sensitivity analysis indicates that the inlet velocity has an acceptable effect on the ESD along the column. The ESD increases near the exit and decreases in the swarm region by increasing the inlet velocities. Turbulent intensity reduces ESD across all column sections while changes in aspect ratio minimally impact ESD. The study shows promise in developing correlations that take into account the spatial variation of ESD in pool scrubbing conditions.

6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성 (Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • 한국의학물리학회지:의학물리
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2004
  • 본 연구에서는 의료용 선형가속기로부터 발생되는 명목상 가속전압 6 MV선의 검출특성을 확인하기 위하여 유전체 물질을 사용한 평행판 검출기를 제작하였다. 제작한 검출기의 전극은 단면이 크롬으로 코팅되어 있는 FEP유전체 필름(두께: 100 $\mu\textrm{m}$)을 사용하였고 두 전극 사이에 PTFE유전체 필름(두께 : 100 $\mu\textrm{m}$)을 삽입하였다. 측정을 위하여 선원-팬텀 표면간의 거리 100 cm, 그리고 팬텀의 표면으로부터 깊이 5 cm되는 지점에 방사선 유도전하를 획득하기 위한 제작검출기를 놓았다. 방사선 조사시 제작검출기의 유용성을 알아보기 위하여, 영점 변동, 누설 전류, 인가전압에 따른 검출기의 반응, 재현성, 선형성, 조직최대선량비 등을 측정하였다. 측정결과 검출기의 영점 변동 전류 (I$_{Z}$ )는 8.3 pA, 누설 전류(I$_{I}$)는 10 pA 이었다. 제작 검출기는 인가전압에 대한 선형성을 보였으며, 또한 재현성실험에서는 조사된 선량에 대하여 1% 오차 범위 내에서 일치하였다. 검출기의 선량에 대한 선형성은 3% 이내의 오차범위에서 일치하면서 선량율 의존성이 있음을 확인하였다. 조직최대선량비분포에 대한 제작 평행판 검출기와 비교검출기간의 선량오차는 팬텀내의 최대 선량점으로부터 7.5 cm까지 3% 이내에서 일치하였다. 본 연구결과 유전체 필름을 이용한 평행판 검출기는 선량계로서의 기본적인 특성들을 허용 가능한 범위에서 만족스러워 상대선량측정을 위한 검출기로 사용할 수 있음을 확인할 수 있었다.

  • PDF

Local Drug Delivery System Using Biodegradable Polymers

  • Khang, Gil-Son;Rhee, John M.;Jeong, Je-Kyo;Lee, Jeong-Sik;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제11권4호
    • /
    • pp.207-223
    • /
    • 2003
  • For last five years, we are developing the novel local drug delivery devices using biodegradable polymers, especially polylactide (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) due to its relatively good biocompatibility, easily controlled biodegradability, good processability and only FDA approved synthetic degradable polymers. The relationship between various kinds of drug [water soluble small molecule drugs: gentamicin sulfate (GS), fentanyl citrate (FC), BCNU, azidothymidine (AZT), pamidronate (ADP), $1,25(OH)_2$ vitamin $D_3$, water insoluble small molecule drugs: fentanyl, ipriflavone (IP) and nifedipine, and water soluble large peptide molecule drug: nerve growth factor (NGF), and Japanese encephalitis virus (JEV)], different types of geometrical devices [microspheres (MSs), microcapsule, nanoparticle, wafers, pellet, beads, multiple-layered beads, implants, fiber, scaffolds, and films], and pharmacological activity are proposed and discussed for the application of pharmaceutics and tissue engineering. Also, local drug delivery devices proposed in this work are introduced in view of preparation method, drug release behavior, biocompatibility, pharmacological effect, and animal studies. In conclusion, we can control the drug release profiles varying with the preparation, formulation and geometrical parameters. Moreover, any types of drug were successfully applicable to achieve linear sustained release from short period ($1{\sim}3$ days) to long period (over 2 months). It is very important to design a suitable formulation for the wanting period of bioactive molecules loaded in biodegradable polymers for the local delivery of drug. The drug release is affected by many factors such as hydrophilicity of drug, electric charge of drug, drug loading amount, polymer molecular weight, the monomer composition, the size of implants, the applied fabrication techniques, and so on. It is well known that the commercialization of new drug needs a lot of cost of money (average: over 10 million US dollar per one drug) and time (average: above 9 years) whereas the development of DDS and high effective generic drug might be need relatively low investment with a short time period. Also, one core technology of DDS can be applicable to many drugs for the market needs. From these reasons, the DDS research on potent generic drugs might be suitable for less risk and high return.

탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구 (A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility)

  • 이창식;김민규;안병희;정희택
    • 청정기술
    • /
    • 제28권4호
    • /
    • pp.316-322
    • /
    • 2022
  • 선택적 촉매환원 시스템 내 촉매 층 입구의 흐름 패턴은 탈질 설비의 성능에 영향을 미치는 주요한 특성 중 하나이다. 암모니아 주입 그리드와 촉매 층 사이의 곡확산부에는 유동 균일성을 개선하기 위해 안내 깃이 설치된다. 본 연구에서는 대형 석탄 화력 발전소의 선택적 촉매환원 시스템을 적용 대상으로 하여 안내 깃의 기하학적 구성이 탈질 설비의 공기역학적 특성에 미치는 영향을 조사하기 위해 수치 해석을 수행하였다. 해석할 유동장은 암모니아 주입구의 출구부터 촉매 층 출구까지의 유동이 흐르는 전 영역을 포함한다. 3차원 정상상태, 점성 유동장을 해석하기 위해 상용 소프트웨어인 ANSYS-Fluent을 사용하여 유동 특성에 맞는 적절한 난류 모델을 적용하였다. 유동장 내부의 속도 및 압력 강하의 루트 평균 제곱을 주요 성능 매개변수로 선택했다. 현재 운용 중인 설비와 비교하여 흐름 품질을 개선하기 위해 4가지 유형의 안내 깃이 제안되었다. 해석 결과, 4번째 형상이 유동 균일성과 압력 등 관점에서 가장 좋은 공력 성능을 나타내었다.