• Title/Summary/Keyword: Geometrical effect

Search Result 576, Processing Time 0.027 seconds

Development of thin film getters for field emission display

  • Yoon, Young-Joon;Kim, Kyoung chan;Baik, Hong-Koo;Lee, Sung-Man
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.74-78
    • /
    • 1999
  • For a high efficient field emission display (FED), the specific vacuum conditions below 10-7 Torr should be required. However, because the FED has the geometrical restriction due to its micro size, the thin film getters can be proposed for chemical pumping as a way to reduce impurity gases in the panel. The thin film getters, developed by employing the coating of new materials such as NI or Pt on getter surface, can be used without any activation process and show the enhanced sorption characteristics. Especially, using the Zr (1${\mu}{\textrm}{m}$) thin film getters with the Pt surface layer, the significant gettering for various active gases could be achieved from 9$\times$10-5 Torr to 1$\times$10-6 Torr or below. this good sorption properties is mainly contributed to the surface coating layer which shows the catalytic effect for gas dissociation and protects the getter materials against oxidation.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Schlieren Visualization of the Thrust Vector Flowfield in a Supersonic Two-Dimensional Nozzle (2차원 초음속 추력편향노즐을 이용한 쉴리렌 가시화 실험연구)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.30-37
    • /
    • 2011
  • The thrust vectoring concept has been used for use in new advanced supersonic aircraft. This study presents the performance characteristics of the thrust vectoring nozzle by visualizing the shock behaviors with Schlieren method. The scaled models were designed and manufactured to see the shock behaviors of the various airflow condition. Also we executed experimental tests to see the geometrical effects of the thrust vector nozzle by changing pitch angle and length of pitch flaps. From this study we could understand the supersonic flow characteristics of the thrust vector nozzle. The total thrust of thrust vector nozzle is diminished by increasing the flap angle. But there is an optimum flap length ratio for attaining the highest thrust level and proper pitch effect.

A Study on GMA Welding Automation of STS301L Joint using Design of Experiment (실험계획법을 이용한 STS301L 이음재의 GMA 용접 자동화에 관한 연구)

  • Baek, Seung-Yeb;Sohn, Il-Seon
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.49-54
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the GMAW (gas metal arc welding). For fatigue design of GMA welded joints such as fillet and plug, ring type joint, it is important to obtain optimum design factor information on GMA welded joints. in this paper, analysis approach for fatigue test using design of experiment are evaluated optimum factor in GMA welded joint type and geometrical parameters of materials. Using these results, that factors applied to fundamental information for fatigue design.

Investigation of the acoustical characteristics of the expansion joint (신축이음장치의 소음특성 고찰 및 환경소음영향평가)

  • Park, Jin-Kyu;Kim, Kwan-Ju;Kim, Sang-Hun;Kwark, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.434-437
    • /
    • 2006
  • The expansion joints are installed for connecting the bridge segments. The ambient noise expansion joints are required in domestic market because of regulation on the noise neighboring traffic roads established by ministry of environment. Therefore, field tests for measuring environment noise depending on the types of the expansion joints are carried out in order to examine the effect of expansion joints into the environments. Related geometrical analysis has been performed.

  • PDF

A study on coupling effect during lifting (다수 캐비티 사출금형에서 충전 불균형 원인 분석 및 스크류 런너 디자인)

  • Kang, Min-A;Kim, Hae-Yeon;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.155-158
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook;Namgung, Cheol;Lee, Jong-Ho;Lim, Young-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation

  • Xiang, Yuzhou;Goh, Anthony Teck Chee;Zhang, Wengang;Zhang, Runhong
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 2018
  • With rapid economic growth, numerous deep excavation projects for high-rise buildings and subway transportation networks have been constructed in the past two decades. Deep excavations particularly in thick deposits of soft clay may cause excessive ground movements and thus result in potential damage to adjacent buildings and supporting utilities. Extensive plane strain finite element analyses considering small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by diaphragm walls and bracings. The excavation geometrical parameters, soil strength and stiffness properties, soil unit weight, the strut stiffness and wall stiffness were varied to study the wall deflection behaviour. Based on these results, a multivariate adaptive regression splines model was developed for estimating the maximum wall deflection. Parametric analyses were also performed to investigate the influence of the various design variables on wall deflections.

Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents

  • Alkhateb, H.;Al-Ostaz, A.;Cheng, A.H.D.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.316-324
    • /
    • 2010
  • The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young's modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.

Experiments on locally dented conical shells under axial compression

  • Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1355-1367
    • /
    • 2015
  • Steel conical shells have long been used in various parts of different structures. Sensitivity to the initial geometrical imperfection has been one of the most significant issues on the stability of these structures, which has made them highly vulnerable to the buckling. Most attention has been devoted to structures under normal fabrication related imperfections. Notwithstanding, the challenges of large local imperfections - presented herein as dent-shaped imperfections - have not been a focus yet for these structures. This study aims to provide experimental data on the effect of such imperfections on the buckling capacity of these shells under axial compression. The results show changes in the buckling mode and the capacity for such damaged thin specimens as is outlined in this paper, with an average overall capacity reduction of 11%.