• Title/Summary/Keyword: Geometrical effect

Search Result 576, Processing Time 0.028 seconds

Optimization of Design Factors for Thermal and Flow Characteristics of a Parallel Flow Heat Exchanger (평행류 열교환기의 열.유동 특성에 대한 설계인자의 최적화)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.640-651
    • /
    • 2000
  • For the heat and fluid flow analyses of a parallel flow heat exchanger, an improved model considering the effect of flat tube with micro-channels is proposed. The effect of flow distribution on the thermal performance of a heat exchanger is numerically investigated. The flow distribution is examined by varying geometrical parameters, i.e., the position of the separators and the inlet/outlet, and the aspect ratio of micro-channels of the heat exchanger. The flow nonuniformities along the paths of the heat exchanger are proposed and observed to evaluate the thermal performance of the heat exchanger. The optimization using ALM method has been accomplished by minimizing the flow nonuniformity. It is found that the heat transfer rate of the optimized model is increased by 6.0% of that of the reference heat exchanger model, and the pressure drop by 0.4%

The effect of AP deployment on the accuracy of indoor localization (실내 측위에서 AP 배치가 측위 정확도에 미치는 영향 분석)

  • Kim, Sang-Dong;Lee, Jong-Hun;Jung, Woo-Young;Park, Yong-Wan
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.169-170
    • /
    • 2007
  • In this paper, we analyze the effect of access point (AP) deployment on the accuracy of indoor localization. Two representative geometrical arrangements of AP deployment are selected. One is that a Tag is centered at the regular triangle composed of 3 AP's, and the other is that a Tag is set apart from the straight line composed of 3 AP's. As a result of simulation, the first case has a probability of 93% with distance errors within 1m, while the second case has a 32% of probability.

  • PDF

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM

  • Hamzehkolaei, N. Safaeian;Malekzadeh, P.;Vaseghi, J.
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.341-358
    • /
    • 2011
  • This paper presents the effects of thermal environment and temperature-dependence of the material properties on axisymmetric bending of functionally graded (FG) circular and annular plates. The material properties are assumed to be temperature-dependent and graded in the thickness direction. In order to accurately evaluate the effect of thermal environment, the initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Governing equations and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the virtual work principle based on the elasticity theory. The differential quadrature method (DQM) as an efficient and robust numerical tool is used to obtain the initial thermal stresses and response of the plate. Comparison studies with some available results for FG plates are performed. The influences of temperature rise, temperature-dependence of material properties, material graded index and different geometrical parameters are carried out.

A Numerical Study of the Effect off Fire Growth Model on Fire Characteristics in a Carriage (화재 성장 모델이 객차내 화재 특성에 미치는 영향에 관한 수치해석적 연구)

  • 김성찬;유홍선;최영기;김동현
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.180-185
    • /
    • 2004
  • The present study investigates the effect of fire growth model on fire development characteristics in a carriage. The parallel processing version of FDS code is used to simulate the fire driven flow in a carriage and two types of fire growth model which are flame spread model and t$^2$ model are examined for the same geometrical condition. The heat release rates(HRR) of both model are similar each other until 30 s after ignition, but the flame spread model predicts 5 times higher than those of the t$^2$ fire model during the quasi-steady fire period. Maximum heat release rate in the case of flame spread model reaches about to 12 MW at 100 s after fire ignition. Also, various database of fire properties for combustible materials and more elaborate combustion model considering the flame spreading phenomena are required for better predictions of fire development characteristics using numerical simulation.

Optimization and Characterization of Gate Electrode Dependent Flicker Noise in Silicon Nanowire Transistors

  • Anandan, P.;Mohankumar, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1343-1348
    • /
    • 2014
  • The low frequency noise in Silicon Nanowire Field Effect Transistors is analyzed by characterizing the gate electrode dependence on various geometrical parameters. It shows that gate electrodes have a strong impact in the flicker noise of Silicon Nanowire Field effect transistors. Optimization of gate electrode was done by comparing different performance metrics such a DIBL, SS, $I_{on}/I_{off}$ and fringing capacitance using TCAD simulations. Molybdenum based gate electrode showed significant improvement in terms of high drive current, Low DIBL and high $I_{on}/I_{off}$. The noise power sepctral density is reduced by characterizing the device at higher frequencies. Silicon Nanowire with Si3N4 spacer decreases the drain current spectral density which interms reduces the fringing fields there by decreasing the flicker noise.

Economic Analysis of Heating and Cooling System Corresponding to the Energy Cost of University Building (대학건물에서 에너지비용 변화에 따른 히트펌프 냉난방시스템에 대한 경제성 분석)

  • Kim, Dong-Wan
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • This research is to analyze LCC of Heat Pump system in university building by reduction of electric power costs for education and incentive system for gas. Produced details item different expense of EHP and GHP equipment construction step and preservation administration step. Analysis result is as following. 1) Executed LCC analysis for target system after lowering whole curriculum reduction of electric power costs for education. Analysis result, energy cost-cutting effect of EHP appears greatly than GHP unlike existent study finding, EHP decided by economical system. 2) Sensitivity analysis executed by incentive 500,000 won per units and geometrical ration of gas expense by 1%. As a result, because lowering effect of electric charges appears greatly, EHP decided by more economical system than GHP. As research result of front is different from existent study finding, EHP by lowering of electric charges for alteration and education of governmental frequent volunteer system was decided by more economical system than GHP.

Optimization of Intentional Mistuning for Bladed Disk : Damping and Coupling Effect (블레이드 디스크의 intentional mistuning 최적화 : 감쇠와 커플링 효과)

  • Choi, Byeong-Keun;Lee, Hyun-Seob;Kim, Hak-Eun;Keun, Su-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.538-541
    • /
    • 2004
  • In turbomachinery rotor, there are small differences in the structural and/or geometrical properties of individual blades, which are referred to as blade mistuning. Mistuning effects of the forced response of bladed disks can be extremely large as often reported in many studies. In this paper, the pattern optimization of intentional mistuning for bladed disks considering with damping and coupling effect is the focus of the present investigation. More specifically, the class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say) and Genetic Algorithm is used to optimize the arrangement of these blades around the disk to reduce the forced response of blade with different damping and coupling stiffness.

  • PDF

Dynamic Behavior of Photoinduced Birefringence of Copolymers Containing Aminonitro Azobenzene Chromophore in the Side Chain

  • 최동훈;강석훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1186-1194
    • /
    • 1999
  • Photoresponsive side chain polymers containing aminonitro azobenzene were synthesized for studying optically induced birefringence. Four different copolymers were prepared using methacrylate, a-methylstyrene, and itaconate monomer. Two copolymers are totally amorphous and the other two are liquid crystalline in nature. Trans-to-cis photoisomerization was observed under the exposure of UV light with UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The dynamic parameters of optically induced birefringence let us compare the effect of polymeric structure on the rate of growth and decay of the birefringence. Besides the effect of glass transition temperature on the dynamics of photoinduced birefringence, we focused our interests on the geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene moiety.

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.657-668
    • /
    • 2019
  • The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.