• 제목/요약/키워드: Geometrical damping

검색결과 54건 처리시간 0.023초

동재하시험을 이용한 모래지반의 말뚝지지력 산정 (Evaluation of Bearing Capacity of Piles in Sand Using Pile Driving Analyzer)

  • 이우진;석종수
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.145-154
    • /
    • 1997
  • 말뚝재하시험방법 중 정적재하시험은 시험에 소요되는 시간과 비용측면에서 불리하여 이를 개선하기 위한 여러 가지의 시험방법이 개발되어 소개되고 있다. 국내에 소개된 시험방법으로는 동재하시험으로 불리는 항타분석기 (PDA : Pile Driving Analyzer)를 이용한 방법을 비롯하여 STATNAMIC. Osterberg cell등이 있다. 이들 중 동재하시험의 사용은 상당히 활성화되어 있는 실정이나 지반조건과 말뚝시공방법에 따라서는 지지력산정시 추가적인 해석모델을 사용하여야 보다 정확한 지지력을 평가 할 수 있는 것으로 알려져 있다. 본 논문에서는 현장에서 수행한 정적 및 동적 재하시험결과의 비교1분석으로 부터 주로 SIP말뚝에 대한 동재하시험시 발생할수 있는 기하감쇠(geometrical damping)의 영향을 고찰하였다. 해석결과로 부터 기하감쇠가 발생한 지반의 경우 CAPWAP에 의해 산정된 지지력이 정재하시험에 의한 지지력에 비해 30~60% 정도 과소평가 되었으며 이때 말뚝주면에 대한 Smith의 감쇠계수 (SSkn)가 1.0 sec/m를 초과 하였다. CAPWAP해석시 기하감쇠를 고려한 해석모델을 사용함으로써 정재하 시험결과와 근사한 지지력을 얻을 수 있었으며 SSkn값도 0.7sec/m이하의 일반적인 범위로 해석되었다.

  • PDF

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Finite element vibration and damping analysis of a partially covered cantilever beam

  • Yaman, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.141-151
    • /
    • 2005
  • There are several ways of decreasing the vibration energy of structures. One of which is special damping layers made of various viscoelastic materials are widely applied in structures subjected to dynamic loading. In this study, a cantilever beam, partially covered by damping a constraining layers, is investigated by using Finite Element method (FEM). The frequency and system loss factor are evaluated. The effects of different physical and geometrical parameters on the natural frequency and system loss factors are discussed.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

6자유도 진동 흡진기의 기하적 설계 이론 (Geometrical Design Theory of a 6 DOF Vibration Absorber)

  • 장선준;최용제
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.191-199
    • /
    • 2005
  • Many researchers have been investigating the design of multi-mode absorption vibration absorber for multi degree-of-freedom (DOF) system. The approach taken to this problem has been to find the optimized constants of stiffness and damping for the given set of single-DOF absorbers or single multi-DOF absorber attached to a multi degree-of-freedom system. This paper presents a novel geometrical and direct design theory of a 6 DOF vibration absorber via screw theory. Theoretical development is demonstrated by a practical example in which the diagonal stiffness matrix is synthesized using rectangular configuration of springs. The performance of this absorber is simulated by modal analysis.

블레이드 디스크의 intentional mistuning 최적화 : 감쇠와 커플링 효과 (Optimization of Intentional Mistuning for Bladed Disk : Damping and Coupling Effect)

  • 최병근;이현섭;김학은;근수종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.538-541
    • /
    • 2004
  • In turbomachinery rotor, there are small differences in the structural and/or geometrical properties of individual blades, which are referred to as blade mistuning. Mistuning effects of the forced response of bladed disks can be extremely large as often reported in many studies. In this paper, the pattern optimization of intentional mistuning for bladed disks considering with damping and coupling effect is the focus of the present investigation. More specifically, the class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say) and Genetic Algorithm is used to optimize the arrangement of these blades around the disk to reduce the forced response of blade with different damping and coupling stiffness.

  • PDF

축대칭 발사체의 감쇠계수 계산을 위한 정상 해법 (A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles)

  • 박수형;권장혁;유영훈
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.1-8
    • /
    • 2006
  • 축대칭 발사체의 동적 감쇠계수를 계산하기 위한 정상 예측 방법을 제안한다. 관성좌표계에서 영스핀 코닝 운동을 사용한 정상 해법을 적용하기 위해서는 점성유동 해석이 필수적으로 이루어져야 한다. 제안된 방법을 회전발사체에 적용하여 피칭모멘트와 피치감쇠 모멘트계수를 계산하였다. 결과는 포물형 Navier-Stokes 예측 결과, 실험결과, 비정상 예측 결과와 잘 일치함을 확인하였다. 또한, secant-ogive-cylinder 계열 발사체에 대한 정적 및 동적 계수의 축방향 생성과정을 살펴봄으로써 후방동체의 형상으로 인한 유동 변화가 동적 안정성에 미치는 영향을 고찰하였다.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.