• Title/Summary/Keyword: Geometrical Modeling

Search Result 228, Processing Time 0.024 seconds

THREE-DIMENTIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION FOR DIFFERENT IMPLANT THREAD SLOPE (임플랜트 나사선 경사각이 치조골 응력 분포에 미치는 영향)

  • Seo, Young-Hun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.482-491
    • /
    • 2007
  • Statement of problem: The screws of dental implant, having various thread types, can be categorized into different classes by their geometrical form, and each type transmits dissimilar amount and form of stress to alveolar bone. Purpose: The purpose of this study was to find an inclination angle of the screw thread that is favorable in distributing the stresses to alveolar bone. Material and methods: In this study, We used three dimensional finite element analysis with modeling having three types of thread inclination angles and fixed pitch-0.8 mm (single thread type with $3.8^{\circ}$ inclination, double thread type with $7.7^{\circ}$ inclination, triple thread type with $11.5^{\circ}$ inclination). Results: The results obtained from this study were as follows; 1. When the number of thread increased, the amount of Von-Mises stress was reduced since the generated stress was effectively distributed. 2. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants when comparing the magnitude of the maximum principal stress double thread had least amount of stress. This shows that the double thread screw gave best result. Conclusion: In conclusion, double, and triple thread screws were found to be more effective on distribution of the stress than the single thread screws. But, increasing in the thread inclination angle such as triple thread screw relate on the magnitude of the maximum principal stress affecting on the alveolar bone can become problematic. Thus, effective combination of thread number and thread inclination angle can help prolonging the longevity of implant.

A Study on Pilot Scale Cyclonic-DAF Reactor for Cyanobacteria Removal (남조류 제거를 위한 선회식 가압부상장치 현장 적용에 관한 연구)

  • Oh, Hong-Sok;Kang, Seon-Hong;Nam, Sook-Hyun;Kim, Eu-Ju;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.17-28
    • /
    • 2018
  • Cyclonic-dissolved air flotation(Cyclonic-DAF), an advanced form of pressure flotation, applies a structure that enables the forming of twirling flows. This in turn allows for suspended matter to adhere to microbubbles and float to the surface of a treatment tank during the process of intake water flowing through a float separation tank. This study conducted a lab-scale test and pursued geometrical modeling using computational fluid dynamics(CFD) to establish a pilot scale design. Based on the design parameters found through the above process, a pilot cyclonic-DAF system($10m^3/hr$) for removing algae was created. Upon developing the pilot-scale cyclonic-DAF system, a type of algae coagulant(R-119) was applied as the coagulant to the system for field testing through which the removal rates of chlorophyll-a and cyanobacteria were evaluated. The chlorophyll-a and harmful cyanobacteria of the raw water at region B, the field-test site, were found to be $177.9mg/m^3$ and 652,500cells/mL respectively. Treated waters applied with 60mg/L and 100mg/L of algae coagulant presented removal efficiencies of approximately 95% and 97%, respectively. The cyanobacteria cell number of the treated waters applied with 60mg/L and 100mg/L of algae coagulant both that were equal to or less than 1,000cells/mL and were below attention level criteria for the issuance of algae boundary.

Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod (경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성)

  • 강흥석;윤경호;송기남;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

Multiple TIP Images Blending for Wide Virtual Environment (넓은 가상환경 구축을 위한 다수의 TIP (Tour into the Picture) 영상 합성)

  • Roh, Chang-Hyun;Lee, Wan-Bok;Ryu, Dae-Hyun;Kang, Jung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry. Especially, owing to its simplicity, TIP(Tour Into the Picture) is preferred to constructing a 3D background scene. Because existing TIP methods have a limitation in that they lack geometrical information, we can not expect a accurate scene if the viewpoint is far from the origin of the TIP. In this paper, we propose the method of constructing a virtual environment of a wide area by blending multiple TIP images. Firstly, we construct multiple TIP models of the virtual environment. Then we interpolate foreground and background objects respectively, to generate a smooth navigation image. The method proposed here can be applied to various industry applications, such as computer game, 3D car navigation, and so on.

Arrangement of Disposal Holes According to the Features of Groundwater Flow (지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안)

  • Ko, Nak-Youl;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the ground-water flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

A study on the characteristics of female shoes in 2000's (여성구두의 디자인 특성에 관한 연구 -2000년대를 중심으로-)

  • Chae, Min-Jung;Koo, Kyo-Jong;Chae, Jin-Mee
    • Korean Journal of Human Ecology
    • /
    • v.17 no.5
    • /
    • pp.975-987
    • /
    • 2008
  • The purpose of this thesis is to conduct a thorough research on shoes of 2000s, understand the changes and analyze the differences and the characteristics of the shoe designs of the past and present in order to predict and indicate the future direction of the women shoe designs. The shoes of the millennium not only kept the old fashioned shapes but also showed futuristic shapes. With the increasing importance of shoes in fashion, shoes with various images were created. As far as the materials are concerned, natural materials and artificial materials were both used. The colors were vivid and the futuristic colors. On the other hand, pastel toned colors and romantic colors were used in many different designs and shapes regardlees of the seasons. Straps and hills differed from the oldies. Heavy decorations were added to strap shoes to form a whole new design and hills show geometrical platforms or the avantgarde like heights. Feminine images overwhelmed the shoe designs of the millennium. To elaborate, Pumps displayed feminine images the most for it showed a high frequency number regardless of the seasons. Shoes are presented in aesthetical perspective rather then functional or practical perspectives that are based on human nature. Cultural, social, environmental and some part religious factors had a great influence on the evolution on the shoes. Especially in the 2000s, future oriented concepts were implemented on shoe designs, resulting a wider range of expressiveness and in the end leading to a more creative shoe designing. Changes in shoe designs could be pointed out in many ways according to the shapes materials, colors, modeling of decorations or also with the diverting trends.

Comparative Study on Structural Behaviors of Skull in Occlusions for Class I and Full-CUSP Class II (정상 I급 교합과 Full-CUSP II급 교합의 두개골 구조거동 비교 해석연구)

  • Lee, Yeo-Kyeong;Park, Jae-Yong;Kim, Hee-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.309-315
    • /
    • 2016
  • Recently, finite element analysis technique has been widely used for structural and mechanical understandings of human body in the dentistry field. This research proposed an effective finite element modeling method based on CT images, and parametric studies were performed for the occlusal simulation. The analyses were performed considering linear material behaviors and nonlinear geometrical effect, and validated with the experimental results. In addition, the skull models with two different molar relations such as Class I and full-CUSP Class II were generated and the analyses were performed using the proposed analytical method. As results, the relationships between the mandibular movement and occlusal force of both two models showed similar tendency in human occlusal force. However, stress was evenly distributed from teeth to facial bone in the skull model with Class I, while stress concentration was appeared in the model with full-CUSP Class II due to the changes of occlusal surfaces of the model.

Plasma Uniformity Numerical Modeling of Geometrical Structure for 450 mm Wafer Process System (450 mm 웨이퍼 공정용 System의 기하학적 구조에 따른 플라즈마 균일도 모델링 분석)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • Asymmetric model for plasma uniformity by Ar and $CF_4$ was modeled by the antenna structure, the diameter of chamber, and the distance between source and substrate for the development of plasma equipment for 450 mm wafer. The aspect ratio of chamber was divided by diameter, distance from substrate, and pumping port area. And we found the condition with the optimized plasma uniformity by changing the antenna structure. The drift diffusion and quasi-neutrality for simplification were used, and the ion energy function was activated for the surface recombination and etching reaction. The uniformity of plasma density on substrate surface was improved by being far of the distance between substrate wall and chamber wall, and substrate and plasma source. And when the antenna of only 2 turns was used, the plasma uniformity can improve from 20~30% to 4.7%.

Numerical Modeling and Experimental Verification for Target Strength of Submerged Objects (수중물체에 대한 음향 표적강도의 수치해석과 실험적 검증)

  • CHOI YOUNG-HO;SHIN KEE-CHUL;YOU JIN-SU;KIM JEA-SOO;JOO WON-HO;KIM YOUNG-HYUN;PARK JONG-HYUN;CHOI SANG-MUN;KIM WOO-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.64-70
    • /
    • 2005
  • Target Strength(TS) is an important factor for the detection of the target in an active sonar system: thus the numerical model for the prediction of TS is widely being developed. For the frequency range of several kHz, the most important scattering mechanism is known to be specular reflection, which is largely affected by the geometrical shape of the target. In this paper, a numerical algorithm to predict TS is developed based on the Kirchhoff approximation which is computationally efficient. The developed algorithm is applied to the canonical targets of simple shapes, for which the analytical solutions exist. The numerical results show good agreement with the analytical solutions. Also, the algorithm is applied to more complex scatterers, and is compared with the experimental data obtained in the water tank experiment for the purpose of verifying the developed numerical model. Discussions on the effect of spatial sampling and other aspects of numerical m odeling are presented.