• Title/Summary/Keyword: Geometric-based Design

Search Result 768, Processing Time 0.023 seconds

The Shape Optimization of Plane Truss Structures with Constraints based on the Failure Probability of Member (부재(部材)의 파괴확률(破壞確率)을 고려(考慮)한 트러스 구조물(構造物)의 형장최적화(形狀最適化))

  • Lee, Gyu Won;Lim, Byeong Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.141-154
    • /
    • 1987
  • The algorithm proposed utilizes the tow-levels technique. In the first level which consists of teeatment only the applied load and design stress as the random variables whose parent distribution has the normal distribution, the cross-sectional areas of the truss members such that the their probabilities of failure have the preseribed failure probabilites are optimized by transforming the nonlinear problem into SUMT, and solving it utilizing modified Newton-Raphson method. In the second level, the geometric shape of truss structure is optimized by utilizing the unidirectional search technique of Powell method which makes it possible to minimize only the objective function. The algorithm proposed is numerically tested for the several truss structures with various shapes and loading conditions. The numerical analysis shows that the rate of decreasing the weight of truss structures is dependent on the prescribed failure probability of the each member of truss structure and the covariance of the applied load and design stress.

  • PDF

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Suggestion on the Prototype of the Korean Barriers through the Investigation and Modeling of RC Protective Installments in Contact Areas (접적지역 RC형 방호시설 조사와 모델링을 통한 한국형 방호벽 설계안의 제시)

  • Park, Young Jun;Lee, Min Su;Lee, Hui Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The aim of this study is to suggest design requirements on the military barriers which are installed to reduce critical damage on protective facilities against sudden pin-point attacks caused by North Korean artilleries. For this purpose, site investigation and review of design drawings associated with barriers built in the contact areas are conducted. With identified data concerning barriers, the geometric modeling, which is used in the structural analysis, is performed. And then, the possible threat of North Korea is determined based on intelligence preparation of battlefields. Once the structural modeling and threat analysis are completed, structural damage on barriers and protective facilities are assessed in terms of impact, penetration, scabbing, and blast pressure effects. According to the analysis results, the thickness of barriers should be 450mm at least and current established barriers need to be structurally reinforced via sectional enlargement.

An Object Oriented Data Model of a Spatiotemporal Geographic-Object Based on Attribute Versioning (속성 버전화에 기반한 시공간 지리-객체의 객체 지향 데이터 모델)

  • Lee, Hong-Ro
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.1-17
    • /
    • 2001
  • Nowadays, spatiotemporal data models deal with objects which can be potentially useful for wide range applications in order to describe complex objects with spatial and/or temporal facilities. However, the information needed by each application usually varies, specially in the geographic information which depends on the kind of time oriented views, as defined in the modeling phase of the spatiotemporal geographic data design. To be able to deal with such diverse needs, geographic information systems must offer features that manipulate geometric, space-dependent(i.e, thematic), and spatial relationship positions with multiple time oriented views. This paper addresses problems of the formal definition of relationships among spatiotemporal objects and their properties on geographic information systems. The geographical data are divided in two main classes : geo-objects and geo-fields, which describe discrete and continuous representations of the spatial reality. I study semantics and syntax about the temporal changes of attributes and the relationship roles on geo-objects and non-geo-objects, This result will contribute on the design of object oriented spatiotemporal data model which is distinguishied from the recent geographic information system of the homogeneously anchored spatial objects

  • PDF

Influence of 1930s Western Women's Apparel Silhouette on the Flower Textile Pattern (1930년대 의상 실루엣이 직물의 꽃문양 디자인에 미치는 영향)

  • Yang, A-Rang;Lee, Hyo-Jin
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.1
    • /
    • pp.49-61
    • /
    • 2012
  • This study focuses on looking at the influence of silhouette in the 1930s on fabric pattern design by comprehending how differently flower-pattern design were found according to clothing silhouette. The period scope of research was limited to 1930s, and the research object was set as the flower patterns seen in the designer's high-fashion and the women's daily apparel as well as the clothes for sports and leisure activities. Based on the above research scope, the researcher investigated the clothing silhouette and the textile patterns in 1930s by reviewing the literature about domestic and foreign books, research papers, domestic and foreign fashion magazines, information on the Internet. A glance at the women's clothing in the 1930s reveals that they emphasized something inactive, elegant, feminine and that great popularity was given to feminine silhouette that closely fitted the body and long and slim, as skirts became longer and longer. Like this, silhouette refused traditional methods in the technique of expressing flower patterns that were on-trend in that period, pursued the freedom of line and form, used shadowing technique by means of free pens and brushes and the effect of watercolors. It also arranged in a semitransparent way and painted contours alone, too. Flower patterns fell into two categories: amorphous abstract patterns and standardized abstract patterns. The patterns expressed themselves, divided into small-scale irregular patterns and abstract geometric patterns that filled the entire textile.

Object Picking and Concurrency for Solid Modeler in Collaborative Design System (협동설계시스템의 솔리드 모델러를 위한 오브젝트의 Picking과 Concurrency)

  • 윤보열;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.723-729
    • /
    • 2001
  • We are able to work on the shared virtual space in Web-based Collaborative Design System using only Internet and Web browser. The users connect to the Solid Modeler Server through m and they create 3D shape and manipulate them variously. Then the users will share 3D objects and two problems can arise. The users must be able to pick the objects effectively which they want to manipulate. When one of the users manipulates a particular object, others should not disturb with the same object. In this paper, picking is implemented not only by computing intersection of mouse pointer with the objects of the virtual world, but also by using capabilities and attributes of scene graph node, by setting bounds intersection testing instead of geometric intersection testing, by limiting the scope of the pick testing, using Java 3D. These methods can reduce the computation of picking and can pick 3D objects effectively and easily using the system of hierarchy. To have effective concurrency, we used shared lock and exclusive lock as the action in work space.

  • PDF

Wall Shear Stress and Flow Patterns in Unruptured and Ruptured Anterior Communicating Artery Aneurysms Using Computational Fluid Dynamics

  • Lee, Ui Yun;Jung, Jinmu;Kwak, Hyo Sung;Lee, Dong Hwan;Chung, Gyung Ho;Park, Jung Soo;Koh, Eun Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Objective : The goal of this study was to compare several parameters, including wall shear stress (WSS) and flow pattern, between unruptured and ruptured anterior communicating artery (ACoA) aneurysms using patient-specific aneurysm geometry. Methods : In total, 18 unruptured and 24 ruptured aneurysms were analyzed using computational fluid dynamics (CFD) models. Minimal, average, and maximal wall shear stress were calculated based on CFD simulations. Aneurysm height, ostium diameter, aspect ratio, and area of aneurysm were measured. Aneurysms were classified according to flow complexity (simple or complex) and inflow jet (concentrated or diffused). Statistical analyses were performed to ascertain differences between the aneurysm groups. Results : Average wall shear stress of the ruptured group was greater than that of the unruptured group (9.42% for aneurysm and 10.38% for ostium). The average area of ruptured aneurysms was 31.22% larger than unruptured aneurysms. Simple flow was observed in 14 of 18 (78%) unruptured aneurysms, while all ruptured aneurysms had complex flow (p<0.001). Ruptured aneurysms were more likely to have a concentrated inflow jet (63%), while unruptured aneurysms predominantly had a diffused inflow jet (83%, p=0.004). Conclusion : Ruptured aneurysms tended to have a larger geometric size and greater WSS compared to unruptured aneurysms, but the difference was not statistically significant. Flow complexity and inflow jet were significantly different between unruptured and ruptured ACoA aneurysms.

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.

Analysis of MSGTR-PAFS Accident of the ATLAS using the MARS-KS Code (MARS-KS 코드를 사용한 ATLAS 실험장치의 MSGTR-PAFS 사고 분석)

  • Jeong, Hyunjoon;Kim, Taewan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.74-80
    • /
    • 2021
  • Korea Atomic Energy Research Institute (KAERI) has been operating an integral effects test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), according to APR1400 for transient experimental and design basis accident simulation. Moreover, based on the experimental data, the domestic standard problem (DSP) program has been conducted in Korea to validate system codes. Recently, through DSP-05, the performance of the passive auxiliary feedwater system (PAFS) in the event of multiple steam generator tube rupture (MSGTR) has been analyzed. However, some errors exist in the reference input model distributed for DSP-05. Furthermore, the calculation results of the heat loss correlation for the secondary system presented in the technical report of the reference indicate that a large difference is present in heat loss from the target value. Thus, in this study, the reference model is corrected using the geometric information from the design report and drawings of ATLAS. Additionally, a new heat loss correlation is suggested by fitting the results of the heat loss tests. Herein, MSGTR-PAFS accident analysis is performed using MARS-KS 1.5 with the improved model. The steady-state calculation results do not significantly differ from the experimental values, and the overall physical behavior of the transient state is properly predicted. Particularly, the predicted operating time of PAFS is similar to the experimental results obtained by the modified model. Furthermore, the operating time of PAFS varies according to the heat loss of the secondary system, and the sensitivity analysis results for the heat loss of the secondary system are presented.