• 제목/요약/키워드: Geometric approach

검색결과 718건 처리시간 0.026초

평형해법에 의한 스탬핑 공정의 단면 해석 (Sectional analysis of stamping processes using Equilibrium approach)

  • 윤정환;유동진;송인섭;양동열;이장희
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

구속조건 관리를 이용한 다각형 모델링 (Polygon Modeling with Constraint Management)

  • 김기현;김재정
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.145-153
    • /
    • 1998
  • An approach has been developed to generate parametric models with Boolean operations. The approach combines Boolean operations and graph manipulation on the constraints imposed on primitives. A Boolean operation is first performed on two primitives and new geometric elements such as vertices and edges are computed. Then to generate the constraint graph of the polygon the each constraints graph of two primitives are merged by adding the new geometric elements with its corresponding constraints. In the merging process, some of the geometric elements belonging to the primitives may be eliminated based on its contribution to the polygon. A computer implementation in a 2D space is described to illustrate the approach with examples.

  • PDF

Nonlinear control of a double-effect evaporator by riemannian geometric approach

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.405-410
    • /
    • 1994
  • The purpose of this paper is to present the details of design procedure of a nonlinear regulator by Riemannian geometric approach and to applied it to the case of a double-effect evaporator. A nonlinear geometric model is proposed on a direct sum space of a state vector and a control vector as well as in the previous parers by the authors. The geometric model is derived by replacing the orthogonal straight coordinate axes of a linear system on the direct sum space with the curvilinear coordinate axes. The integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the geometric model a nonlinear regulator with a performance index is designed renewedly by the procedure of optimization. The construction method of the curvilinear coordinate axes on which the nonlinear system behaves as a linear system is discussed. To apply the above regulator theory to double-effect evaporators especially to the pilot plant at the University of Alberta, a suitable nonlinear model is determined by the plant dynamics. The optimal control law is derived through the calculation of the homeomorphism. As a result it is confirmed that the regulator is effective and superior to that of the conventional control.

  • PDF

잠수함의 설계 인자들에 대해 안정성 지수가 가지는 민감도 해석 (Sensitivity Analysis on the Stability of a Submarine Concerning its Design Parameters)

  • 여동진;윤현규;김연규;이창민
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.521-528
    • /
    • 2006
  • In this study, we developed a new systematic approach to assess the influence of geometric parameter change on the horizontal and vertical stability indices. To do this, three phases of sensitivity analyses were carried out. First, typical geometric parameters were defined and their effects on hydrodynamic coefficients were assessed by the Sensitivity Analysis (SA) of the indirect method. Second, the effects of hydrodynamic coefficients on the stability indices were calculated. Finally, the sensitivities of geometric parameters on the stability indices were obtained by merging the outputs of two phases using chain rule. The developed approach cau contribute to a submarine designer to determine geometric parameters satisfying pre-requirements about stability systematically.

Automatic Identification of Fiducial Marks Based on Weak Constraints

  • Cho, Seong-Ik;Kim, Kyoung-Ok
    • 대한원격탐사학회지
    • /
    • 제19권1호
    • /
    • pp.61-70
    • /
    • 2003
  • This paper proposes an autonomous approach to localize the center of fiducial marks included in aerial photographs without precise geometric information and human interactions. For this localization, we present a conceptual model based on two assumptions representing symmetric characteristics of fiducial area and fiducial mark. The model makes it possible to locate exact center of a fiducial mark by checking the symmetric characteristics of pixel value distribution around the mark. The proposed approach is composed of three steps: (a) determining the symmetric center of fiducial area, (b) finding the center of a fiducial mark with unit pixel accuracy, and finally (c) localizing the exact center up to sub-pixel accuracy. The symmetric center of the mark is calculated tv successively applying three geometric filters: simplified ${\nabla}^2$G (Laplacian of Gaussian) filter, symmetry enhancement filter, and high pass filter. By introducing a self-diagnosis function based on the self-similarity measurement, a way of rejecting unreliable cases of center calculation is proposed, as well. The experiments were done with respect to 284 samples of fiducial marks composed of RMK- and RC-style ones extracted from 51 scanned aerial photographs. It was evaluated in the visual inspection that the proposed approach had resulted the erroneous identification with respect to only one mark. Although the proposed approach is based on weak constraints, being free from the exact geometric model of the fiducial marks, experimental results showed that the proposed approach is sufficiently robust and reliable.

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

A Simple Geometric Approach to Evaluating a Bivariate Normal Orthant Probability

  • Lee, Kee-Won;Kim, Yoon-Tae;Kim, U-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.595-600
    • /
    • 1999
  • We present a simple geometric approach which uses polar transformation and elementary trigonometry to evaluating an orthant probability in a bivariate normal distribution. Figures are provided to illustrate the situation for varying correlation coefficient. We derive the distribution of the sample correlation coefficient from a bivariate normal distribution when the sample size is 2 as an application.

  • PDF

UAV Conflict Detection and Resolution Based on Geometric Approach

  • Park, Jung-Woo;Oh, Hyon-Dong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.37-45
    • /
    • 2009
  • A method of conflict detection and resolution is described by using simple geometric approach. Two VAVs are dealt with and considered as point masses with constant velocity. This paper discusses en route aircraft which are assumed to be linked by real time data bases like ADS-B. With this data base, all DAVs share the information each other. Calculating PCA (Point of Closest Approach), we can evaluate the worst conflict condition between two VAVs. This paper proposes one resolution maneuvering logic, which can be called 'Vector Sharing Resolution'. In case of conflict, using miss distance vector in PCA, we can decide the directions for two VAVs to share the conflict region. With these directions, VAVs are going to maneuver cooperatively. First of all, this paper describes some '2-D' conflict scenarios and then extends to '3-D' conflict scenarios.