• Title/Summary/Keyword: Geometric Registration

Search Result 81, Processing Time 0.028 seconds

Surface-based Geometric Registration of Aerial Images and LIDAR Data

  • Lee, Impyeong;Kim, Seong-Joon;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • Precise geometric registration is required in multi-source data fusion process to obtain synergistic results successfully. However, most of the previous studies focus on the assumption of perfect registration or registration in a limited local area with intuitively derived simple geometric model. In this study, therefore, we developed a robust method for geometric registration based on a systematic model that is derived from the geometry associated with the data acquisition processes. The key concept of the proposed approach is to utilize smooth planar patches extracted from LIDAR data as control surfaces to adjust exterior orientation parameters of the aerial images. Registration of the simulated LIDAR data and aerial images was performed. The experimental results show that the RMS value of the geometric discrepancies between two data sets is decreased to less than ${\pm}0.30\;m$ after applying suggested registration method.

  • PDF

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Development of Registration Algorithm considering Coordinate Weights for Automobile Sub-Frame Assembly (가중치를 고려한 자동차 서브프레임의 인증 알고리즘 구현)

  • Lee, Kwang-Il;Yang, Seung-Han;Lee, Young-Moon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.7-12
    • /
    • 2004
  • Inspection and analysis are essential process to determine whether a completed product is in given specification or not. Analysis of products with very complicated shape is difficult to carry out direct comparison between inspected coordinate and designed coordinates. So process called as matching or registrations is needed to solve this problem. By defining error between two coordinates and minimizing the error, registration is done. Registration consists of translation, rotation and scale transformations. Error must be defined to express feature of inspected product. In this paper, registration algorithm is developed to determine pose of sub-frame at assembly with body of automobile by defining error between two coordinates considering geometric feature of sub-frame.

  • PDF

Symmetric Conformal Mapping for Surface Matching and Registration

  • Zeng, Wei;Hua, Jing;Gu, Xianfeng David
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Recently, various conformal geometric methods have been presented for non-rigid surface matching and registration. This work proposes to improve the robustness of conformal geometric methods to the boundaries by incorporating the symmetric information of the input surface. We presented two symmetric conformal mapping methods, which are based on solving Riemann-Cauchy equation and curvature flow respectively. Experimental results on geometric data acquired from real life demonstrate that the symmetric conformal mapping is insensitive to the boundary occlusions. The method outperforms all the others in terms of robustness. The method has the potential to be generalized to high genus surfaces using hyperbolic curvature flow.

A GEOMETRIC STANDARDIZATION OF PERIAPICAL INTRAORAL RADIOGRAPHY (구내 표준 방사선 사진촬영의 위치 표준화)

  • Choi Bong-In;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.21 no.2
    • /
    • pp.415-423
    • /
    • 1991
  • This study was performed to evaluate the geometric standardization of periapical intraoral radiography. Image distortion was measured by analysing serial radiography obtained from dry skull using 5 types of bite registration device. After 16 weeks, the angular distortion of Pattern resin was 0.26±0.14 degree(Horizontal angle 0.17±0.14, Vertical angle 0.16±0.11) which was the lowest among the 5 registration device, and that of putty type Exaflex was 0.49±0.35 degree(Horizontal angle 0.42±0.35, Vertical angle 0.17±0.13) which was the highest. The mean amount of distortion variance of Tooth shade acrylic at each experimental period was 0.06±0.08 which was the lowest among the 5 registration device, and that of XCP alone was 0.ll±0.13 which was the highest.

  • PDF

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

Precise Geometric Registration of Aerial Imagery and LIDAR Data

  • Choi, Kyoung-Ah;Hong, Ju-Seok;Lee, Im-Pyeong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.506-516
    • /
    • 2011
  • In this paper, we develop a registration method to eliminate the geometric inconsistency between the stereo-images and light detection and ranging (LIDAR) data obtained by an airborne multisensor system. This method consists of three steps: registration primitive extraction, correspondence establishment, and exterior orientation parameter (EOP) adjustment. As the primitives, we employ object points and linked edges from the stereo-images and planar patches and intersection edges from the LIDAR data. After extracting these primitives, we establish the correspondence between them, being classified into vertical and horizontal groups. These corresponding pairs are simultaneously incorporated as stochastic constraints into aerial triangulation based on the bundle block adjustment. Finally, the EOPs of the images are adjusted to minimize the inconsistency. The results from the application of our method to real data demonstrate that the inconsistency between both data sets is significantly reduced from the range of 0.5 m to 2 m to less than 0.05 m. Hence, the results show that the proposed method is useful for the data fusion of aerial images and LIDAR data.

Coarse to Fine Image Registration of Unmanned Aerial Vehicle Images over Agricultural Area using SURF and Mutual Information Methods (SURF 기법과 상호정보기법을 활용한 농경지 지역 무인항공기 영상 간 정밀영상등록)

  • Kim, Taeheon;Lee, Kirim;Lee, Won Hee;Yeom, Junho;Jung, Sejung;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.945-957
    • /
    • 2019
  • In this study, we propose a coarse to fine image registration method for eliminating geometric error between images over agricultural areas acquired using Unmanned Aerial Vehicle (UAV). First, images of agricultural area were acquired using UAV, and then orthophotos were generated. In order to reduce the probability of extracting outliers that cause errors during image registration, the region of interest is selected by using the metadata of the generated orthophotos to minimize the search area. The coarse image registration was performed based on the extracted tie-points using the Speeded-Up Robust Features (SURF) method to eliminate geometric error between orthophotos. Subsequently, the fine image registration was performed using tie-points extracted through the Mutual Information (MI) method, which can extract the tie-points effectively even if there is no outstanding spatial properties or structure in the image. To verify the effectiveness and superiority of the proposed method, a comparison analysis using 8 orthophotos was performed with the results of image registration using the SURF method and the MI method individually. As a result, we confirmed that the proposed method can effectively eliminated the geometric errors between the orthophotos.