• Title/Summary/Keyword: Geometric Pattern Matching

Search Result 18, Processing Time 0.024 seconds

A Study on Vision System for High Precision Alignment of Large LCD Flat Panel Display (LCD 대평판 고정밀 얼라인먼트를 위한 비전 시스템 연구)

  • Cho, Sung-Man;Song, Chun-Sam;Kim, Joon-Hyun;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.909-915
    • /
    • 2009
  • This work is to develop a vision system for high precision alignment between upper and lower plates required at the imprinting process of the large LCD flat panel. We compose a gantry-stage that has highly repeated accuracy for high precision alignment and achieves analysis about thermal transformations of stage itself. Position error in the stage is corrected by feedback control from the analysis. This system can confirm alignment mark of upper and lower plates by using two cameras at a time for the alignment of two plates. Pattern matching that uses geometric feature is proposed to consider the recognition problem for alignment mark of two plates. It is algorithm to correct central point and angle for the alignment from the recognized mark of upper and lower plates based on the special characteristics. At the alignment process, revision for error position is performed through Look and Move techniques.

Estimating Geometric Transformation of Planar Pattern in Spherical Panoramic Image (구면 파노라마 영상에서의 평면 패턴의 기하 변환 추정)

  • Kim, Bosung;Park, Jong-Seung
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1185-1194
    • /
    • 2015
  • A spherical panoramic image does not conform to the pin-hole camera model, and, hence, it is not possible to utilize previous techniques consisting of plane-to-plane transformation. In this paper, we propose a new method to estimate the planar geometric transformation between the planar image and a spherical panoramic image. Our proposed method estimates the transformation parameters for latitude, longitude, rotation and scaling factors when the matching pairs between a spherical panoramic image and a planar image are given. A planar image is projected into a spherical panoramic image through two steps of nonlinear coordinate transformations, which makes it difficult to compute the geometric transformation. The advantage of using our method is that we can uncover each of the implicit factors as well as the overall transformation. The experiment results show that our proposed method can achieve estimation errors of around 1% and is not affected by deformation factors, such as the latitude and rotation.

Recognition of dimension lines based on extraction of the objet in mechanical drawings (기계 도면에서 객체의 분리 추출에 기반한 치수선의 인식)

  • 정영수;박길흠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.120-131
    • /
    • 1997
  • This paper prsents a new method that automatically recognizes the dimension lines (consisting of shape lines, tail lines and extension lines) from the mechanical drawings. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then the object lines and interpretation lines are vectorized by using several techniques such as thinning, line-vectorization, and vector-clustering. Finally, after recognizing arrowheads by using pattern matching, we recognize dimension lines from interpretation lines by using arrohead's directional vector and centroid. By using the methods of geometric modeling and mathematical operation, the proposed method readility recognizes the dimension lines from complex drawings. Experimental resuls are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

Intelligent CAD System for Cold Forging Using Fuzzy Theory (냉간단조 공정설계를 위한 intelligent CAD system에 관한 연구)

  • 가타야마
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.1-25
    • /
    • 1995
  • This paper deals with the development of an intelligent CAD system for specifying the operation sequence in cold forging. Cold forging technology is facing with various new design requirements. Therefore, it is very important to develop a decision method for the operation sequence, with comparatively high adaptability to the new requirements. An intelligent CAD system which is the uncertain factors in human knowledge into consideration by applying fuzzy theory is established. Various actual design data about were organized, and these organized data were applied to the system as the case base. The system automatically generates the design data of operation sequence such as the forming method and the geometric data of products in each operation stage by the reasoning method applied the fuzzy pattern matching. By comparing the design results in the above system with the actual design data of a human expert, this paper presents that our method is useful for practical application.

An Improved Object Detection Method using Hausdorff Distance Modified by Local Pattern Similarity (국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출)

  • Cho, Kyoung-Sik;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.147-152
    • /
    • 2007
  • Face detection is a crucial part of the face recognition system. It determines the performance of the whole recognition system. Hausdorff distance metric has been used in face detection and recognition with good results. It defines the distance metric based only on the geometric similarity between two sets or points. However, not only the geometry but also the local patterns around the points are available in most cases. In this paper a new Hausdorff distance measure is proposed that makes hybrid use of the similarity of the geometry and the local patterns around the points. Several experiments shows that the new method outperforms the conventional method.

  • PDF

A Conical-Cylindrical Monopole Antenna

  • Jeong, Hye-Mi;Park, Seong-Bae;Kim, Choon-Won;Sodnomtseren, Ononchimeg;Bang, Jai-Hoon;Ahn, Biemg-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.138-146
    • /
    • 2007
  • In this paper, a monopole antenna of conical-cylindrical compound shape is presented. The conventional circular conical monopole antenna is modified by placing a cylinder at the top of the inverted cone. The cylindrical portion is useful in the wide band impedance matching, in adjusting the antenna gain in the horizontal direction, and in reducing the cone diameter. The dependence of the antenna performance on various geometric parameters is investigated using a commercial electromagnetic simulation software, from which an optimum design of the antenna is derived. The diameter of the circular ground plane is minimized to 115 wavelength at the lowest operating frequency. The antenna proposed in this study shows a reflection coefficient less than -10 dB and a 1${\sim}$6 dBi gain over 3${\sim}$20 GHz frequencies. The antenna shows a circular-symmetric radiation pattern in the horizontal plane and a null-free pattern in the vertical direction over the whole operating frequency range.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

New Fast Block-Matching Motion Estimation using Temporal and Spatial Correlation of Motion Vectors (움직임 벡터의 시공간 상관성을 이용한 새로운 고속 블럭 정합 움직임 추정 방식)

  • 남재열;서재수;곽진석;이명호;송근원
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.247-259
    • /
    • 2000
  • This paper introduces a new technique that reduces the search times and Improves the accuracy of motion estimation using high temporal and spatial correlation of motion vector. Instead of using the fixed first search Point of previously proposed search algorithms, the proposed method finds more accurate first search point as to compensating searching area using high temporal and spatial correlation of motion vector. Therefore, the main idea of proposed method is to find first search point to improve the performance of motion estimation and reduce the search times. The proposed method utilizes the direction of the same coordinate block of the previous frame compared with a block of the current frame to use temporal correlation and the direction of the adjacent blocks of the current frame to use spatial correlation. Based on these directions, we compute the first search point. We search the motion vector in the middle of computed first search point with two fixed search patterns. Using that idea, an efficient adaptive predicted direction search algorithm (APDSA) for block matching motion estimation is proposed. In the experimental results show that the PSNR values are improved up to the 3.6dB as depend on the Image sequences and advanced about 1.7dB on an average. The results of the comparison show that the performance of the proposed APDSA algorithm is better than those of other fast search algorithms whether the image sequence contains fast or slow motion, and is similar to the performance of the FS (Full Search) algorithm. Simulation results also show that the performance of the APDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS algorithm.

  • PDF