• Title/Summary/Keyword: Geometric Grid

Search Result 119, Processing Time 0.031 seconds

Study for Accessment of Structural Stability of SAS Reactor (SAS 반응기의 구조 안전성 평가 연구)

  • 이은우;정의동;김윤춘;김종배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.43-49
    • /
    • 1995
  • Sasol Advanced Synthol Reactor was divided into two chambers by grid plate perforated with diffuser holes. The reactor has high stress level beacuse of membrane stress due to internal pressure, thermal stress due to temperature difference and local stress due to structural discontinuity at the juncture of grid plate and shell. Moreover, geometric nonlinear behaviors may appear in the grid plate because of pressure difference between two chambers. In order to survey the stress level and geometric nonlinear behaviors around grid plate, heat transfer analysis, linear static analysis and geometric nonlinear analysis were performed using NISA II developed by EMRC. This paper demonstrates the result of accessment for linear static and geometric nonlinear analysis under various load combinations.

  • PDF

Unstructured Moving-Grid Finite-Volume Method for Unsteady Shocked Flows

  • Yamakawa M.;Matsuno K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.86-87
    • /
    • 2003
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be changed and deformed with time if we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

  • PDF

A Study on an Extraction of the Geometric Characteristics of the Pyongchang River basin by Using Geographic Information System (GIS를 활용한 유역의 하천 형태학적 특성 추출에 관한 연구)

  • Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.115-119
    • /
    • 1996
  • odel). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor amThe main objective of this study is to extract of the geometric characteristics of the Pyongchang River basin, headwaters of the South Ran River. A GIS is capable of extracting various hydrological factors from DEM(digital elevation mong various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated. by using the function of ARC/INFO software as a GIS package. Scanned data is used for this study and it is converted to DEM data Various forms of representation of spatial data are handled in main modules and a GRID module of ARC/INFO. A GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flowdirection, stream networks and others are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics as parameters of watershed can be quantified by a using GIS technique. Resonable results can be obtained as compared with conventional graphic methods.

  • PDF

Automatic Multi-Block Grid Generation Technique Based on Delaunay Triangulation (Delaunay 삼각화 기법을 활용한 다중-블록 정렬 격자의 자동 생성 기법)

  • Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.108-114
    • /
    • 1999
  • In this paper. a new automatic multi=block grid generation technique for general 2D regions is introduced. According to this simple and robust method, the domain of interest is first triangulated by using Delaunay triangulation of boundary points, and then geometric information of those triangles is used to obtain block topology. Once block boundaries are obtained. structured grid for each block is generated such that grid lines have $C^0-continuity$ across inter-block boundaries. In the final step of the present method, an elliptic grid generation method is applied to smoothen grid distribution for each block and also to re-locale the inter-block boundaries, and eventually to achieve a globally smooth multi-block structured grid system with $C^1-continuity$.

  • PDF

CAD Model Generation from Point Clouds using 3D Grid Method (Grid 방법을 이용한 측정 점데이터로부터의 CAD모델 생성에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.435-438
    • /
    • 2001
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

UNSTRUCTURED MOVING-GRID FINITE-VOLUME METHOD FOR UNSTEADY SHOCKED FLOWS

  • Yamakawa M;Matsuno K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.24-30
    • /
    • 2005
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be time-dependently changing and deforming according to the movement of the boundaries when we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

Computation of Thermal Flow for Automotive Lamp by Using Geometric Octree Method (기하학적 Octree 격자생성법을 이용한 자동차 헤드램프 내부의 열유동 계산)

  • Sah Jong-Youb;Park Jong-Ryul;Kang Dong-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.152-156
    • /
    • 2001
  • Three dimensional orthogonal grid generation is able to control effectively the grid spacing near the boundaries, but there are some difficulty to meshing complex geometry. The mesh complex geometry by orthogonal grid generation method must divide block of geometry It is required a careful skill, and long time. Its also difficulty to make unstructured mesh on complex geometry. Particularly, three dimensional geometry must have more time and effort. Recently, there have been growing interests in mesh generation of complex grometry, aslike an automobile headlamp, the heart. The method of easily meshing complex geometry is resarched to solve them. We suggest octree grid into one among these methods. As octrce grid is automaticaly adapted at the boundaries by determine the level operations to control the grid spacing near the boundaries are unnecessary. In this paper we showed throe dimensional mesh generation, and heat-flow analysis on the octree mesh.

  • PDF

A study on the change of air lead concentrations in lead-acid battery plants (축전지 사업장에서 공기 중 납 농도의 변화에 관한 연구)

  • Choi, Seung-Hyun;Kim, Nam-Soo;Kim, Jin-Ho;Cho, Kwang-Sung;Ham, Jung-O;Ahn, Kyu-Dong;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • To provide necessary information for future environmental monitoring of storage batteries in Korea, authors analyzed environmental monitoring dataset of air lead concentration of 12 storage battery industries measured during 1989-2006. We calculated geometric mean and standard deviation with minimum and maximum value of each year dataset. Air lead concentration data were analyzed according to year of measurement, type of grid manufacturing method (grid casting type or expander type), size of industries and type of operation (casting, lead powder & pasting, assembly and others). The geometric mean and standard deviation of all lead industries for overall 18 years were $72{\mu}g/m^3$ and 3.65 with minimum of $6{\mu}g/m^3$ and maximum of $7,956{\mu}g/m^3$. The geometric mean air lead concentrations of years between 1989-1999 were above the Korean PEL($50{\mu}g/m^3$), whereas those of years after year 2000 were below the Korean PEL showing 50% of it. The geometric mean concentration of air lead was significantly lower in expander method battery industries than that of grid method battery industries and was lower in large sized battery industries than small & medium sized ones throughout the whole 18 years period. The distributions of over PEL($50{\mu}g/m^3$) were decreased by the years of environmental monitoring and those were lower in expander method battery industries than grid method battery industries. The significant reduction of mean air lead concentration during last 10 years may be induced partly due to more active environmental engineering control and new introduction of new operation in grid method battery industries, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist which is not concrete evidence, but just circumstantial evidence.

Parallelized Unstructured-Grid Finite Volume Method for Modeling Radiative Heat Transfer

  • Kim Gunhong;Kim Seokgwon;Kim Yongmo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1006-1017
    • /
    • 2005
  • In this work, we developed an accurate and efficient radiative finite volume method applicable for the complex 2D planar and 3D geometries using an unstructured-grid finite volume method. The present numerical model has fully been validated by several benchmark cases including the radiative heat transfer in quadrilateral enclosure with isothermal medium, tetrahedral enclosure, a three-dimensional idealized furnace, as well as convection-coupled radiative heat transfer in a square enclosure. The numerical results for all cases are well agreed with the previous results. Special emphasis is given to the parallelization of the unstructured-grid radiative FVM using the domain decomposition approach. Numerical results indicate that the present parallel unstruc­tured-grid FVM has the good performance in terms of accuracy, geometric flexibility, and computational efficiency.