• 제목/요약/키워드: Geometric Correction

검색결과 298건 처리시간 0.03초

Residual error selecting method for precise geometric correction

  • Kim, Myoung-Sun;Ohno, Yasuo;Takagi, Mikio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.3-7
    • /
    • 1999
  • The images of the meteorological satellite NOAA contain geometrical distortions caused by its ambiguous position, its vibration, its sensor's movement, and so on. Geometric correction of satellite images is one of the most important parts in many remote sensing as the primary processing. Ground control points (GCP's) are necessary to check the accuracy of geometric correction and used for precise geometric correction. In this paper, a method for automatically selecting the residual error is presented. Calculating the effective angle and residual errors vector using the succeeded matching GCP's, precise geometric correction using an affine transformation is applied to systematically a corrected image. And the error is decreased by an affine transformation. The above enable the geometric correction of high quality.

  • PDF

Generation of GCP Chip in Landsat-7 ETM+

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.29-33
    • /
    • 2002
  • In order to utilize remote sensed images widely, it is necessary to correct geometrically. Traditional approaches to geometric correction require substantial human operations. Such substantial human operations make geometric correction a laborious and tedious process. In this paper, We introduce concept of GCP(Ground Control Point) Chip and generate a GCP Chip for automatic geometric correction. GCP Chip is small image patch which has a GCP in reference coordinate image. GCP Chip will be used to match new images in geometric correction. We generated GCP chip using Landsat-7 ETM+ panchromatic band image in this study. Henceforth this result will support automatic process in geometric correction.

  • PDF

An Automatic Approach for Geometric Correction of Landsat Images

  • Hwang, Tae-Hyun;Chae, Gee-Ju;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.542-542
    • /
    • 2002
  • Geometric correction is a critical step to remove geometric distortions in satellite images. For correct geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of corrected satellite images. In this paper, we present an automatic approach for geometric correction by constructing GCP Chip database (GCP DB) that is a collection of pieces of images with geometric information. The GCP DB is constructed by exploiting Landsat's nadir-viewing property and the constructed GCP DB is combined with a simple block matching algorithm for efficient GCP matching. This approach reduces time and energy for tedious manual geometric correction and promotes usage of Landsat images.

  • PDF

Landsat 영상의 온라인 자동 기하보정 시스템 (On-line Automatic Geometric Correction System of Landsat Imagery)

  • 윤영보;황태현;조성익;박종현
    • 한국지리정보학회지
    • /
    • 제7권4호
    • /
    • pp.15-23
    • /
    • 2004
  • 원격탐사 자료를 효율적으로 사용하기 위해서 위성영상의 기하학적인 왜곡을 제거하는 작업은 반드시 필요하다. 이러한 기하보정을 위해서는 기하보정 된 위성영상, 수치지도, GPS 측량 및 기타 방법에 의해 획득되어진 지상기준점을 필요로 한다. 지금까지의 지상기준점을 이용한 기하보정 방법은 수동적으로 이루어 졌으며, 많은 시간과 노력을 필요로 하였다. 본 논문에서는 GCP Chip 데이터베이스를 이용하여 온라인 상에서 자동으로 기하보정 하는 방법을 제안하였다. 제안된 온라인 자동기하보정 시스템은 영상을 입력하는 부분, 지상기준점 영상을 조정하는 부분, 선택된 지상기준점을 수정 및 갱신하는 부분, 그리고 기하보정 결과를 저장하는 네 가지 부분으로 이루어져 있다. 결론적으로 이러한 온라인 자동 기하보정 시스템을 이용하여 기존의 수동적인 기하보정방법 보다 시간 및 노력을 줄일 수 있으며, 랜셋 영상의 활용에 기여할 것이다.

  • PDF

An Automatic Method of Geometric Correction for Landsat Image using GCP Chip Database

  • Hwang, Tae-Hyun;Yun, Young-Bo;Yoon, Geun-Won;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.549-551
    • /
    • 2003
  • Satellite images are utilized for various purposes and many people are concerned about them. But it is necessary to process geometric correction for using of satellite images. However, common user regards geometric correction, which is basic preprocessing for satellite image, as laborious job. Therefore we should provide an automatic geometric correction method for Landsat image using GCP chip database. The GCP chip database is the collection of pieces of images with geoinformation and is provided by XML web service. More specifically, XML web service enables common users to easily use our GCP chip database for their own geometric correcting applications.

  • PDF

디지털 공제술에서 비표준화 방사선사진의 대조도 및 기하학적 보정에 관한 연구 (Contrast and geometric correction of non-standardized radiographs in digital subtraction radiography)

  • 김은경
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.797-809
    • /
    • 1998
  • The purposes of this study were to develop the computer program for the contrast and geometric correction in digital subtration radiography with the IDL (Interactive Data Language) and compare the results with this program for the correction of the non-standardized radiographs to those of standardized radiographs and those with "Emago" software, the commercial program for the correction. The procedures were written for the contrast correction and subtraction with the geometric correction, using IDL. 32 pairs of periapical radiographs of premolar and molar portion of two dry human mandibles were taken at two different occasions with XCP film holder(nonstandardized films) and another 32 pairs with customized XCP film holder(standardized films). Subtraction of standardized film pairs was performed. Subtraction after the contrast and geometric correction of non-standardized films was performed using the newly developed program and Emago software. Standard deviations of grey levels of the subtracted images by the newly developed program were compared with those of the standardized group and Emago-corrected group. Standard deviations of grey levels of new program-corrected group were much smaller than those of the Emago-corrected group (p<0.001) and slightly larger than those of standardized group (p<0.05). However, the difference was very minute. This study indicates that the newly developed program written with IDL may substitute the mechanical standardization for digital subtraction radiography.

  • PDF

A Selection Method of Residual Errors for GMS Geometric Correction Using Ground Control Points

  • Yasukawa, Masaki;Takagi, Mikio;Yasuoka, Yoshifumi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1168-1170
    • /
    • 2003
  • The GMS geometric correction method with highspeed and high accuracy is needed. In this paper, a selection method of residual errors for the GMS geometric correction using GCPs (ground control points) is described. Namely, it is a technique for limiting the number of residual error acquisition using GCPs in each block to reduce the processing time. As the result, since the processing time was about 7.0 minutes on conventional geometric correction and about 5.6 minutes on the proposed method, it was shown that the processing time of about 1.4 minutes was shortened.

  • PDF

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

변형 가능한 곡면에서의 디지털 영상 투영을 위한 실시간 기하 보정 시스템 (Real-time Geometric Correction System for Digital Image Projection onto Deformable Surface)

  • 이영보;한상현;김정훈;이동훈;윤태수
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.39-44
    • /
    • 2008
  • 본 논문에서는 변형한 가능 곡면에 가상의 텍스쳐를 투영하기 위한 프로젝터 기반의 실시간 기하 보정 시스템을 제안한다. 다수의 대응점들의 위치를 추적하기 위하여 사용되는 마커들은 프로젝터의 영상이 투영되더라도 그 흔적이 남아있어서 투영 영상을 훼손한다. 또한 출력 영상의 사전 기하 보정 과정에서 병목 현상이 발생하기 때문에 실시간 기하 보정 시스템의 구현이 어렵다. 따라서 본 논문에서는 마커 인식 과정에서 마커에 의해 투영 영상이 훼손되는 현상을 막기 위해 눈에 보이지 않는 적외선 마커를 사용하며, NVIDIA의 Cg ToolKit을 이용하여 고속의 GPU 연산을 수행함으로서 자연스러운 실시간 보정 영상의 출력이 가능하다. 본 논문의 실험 결과에서는 눈에 보이지 않는 마커가 그려진 종이 위에서 사용자와의 상호 작용이 가능한 디지털 영상을 투영한다. 이를 통해 증강 현실 기반의 다양한 디지털 콘텐츠 제작이 가능하다.

  • PDF