• Title/Summary/Keyword: Geology Field

Search Result 816, Processing Time 0.026 seconds

Research Trends of Japanese Earth Science Education: An Analysis of Chigakukyouiku published by Japan Society of Earth Science Education (일본의 지구과학교육 연구 동향: 학회지 "지학교육(地學敎育)"을 중심으로)

  • Lee, Myon-U
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.147-158
    • /
    • 2007
  • The purpose of this study was to investigate research trends of Japanese earth science education published in Chigakukyouiku by the Japan Society of Earth Science Education. A total of 129 articles published in the Journal between 1998 and 2003 were analyzed. The Journal published six issues each year, and each issue contained about four articles that were fewer numbers than Journal of the Korean Earth Science Society's. About Sixty percent of the papers were written by a single author. Analyzing the content of the papers, it was noted that the most articles were geology-related (41.1%) followed by oceanography-related (1.6%) and general science education papers (1.6%). In summary, the characteristics of research trends of Japanese earth science education are as follows: First, the most topics of the papers were related to environmental sciences including earthquake, volcano, and tsunami. This trend seems natural because Japanese schools are situated within the reach of these environmental events. Second, there found many papers that dealt with geological field trip or fossils adjacent to the local community. Third, there were several papers that established a relationship between environmental education and earth science education. Obviously these papers tried to incorporate environmental education into earth science education at the school level. Last but not least, there found an effort to introduce computer into earth science education as an innovative educational method, for example, 'computer and earth science education'.

Surface Characterization of Rocks after Treated with Developed Consolidants (개발 강화제 처리 전후의 암석 표면에 나타나는 특성 변화 연구)

  • Kim, Jeong-Jin;Jang, Yun-Deuk;Won, Jong-Ok;Kang, Young-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.105-115
    • /
    • 2012
  • The consolidants have been widely used for the consolidation of decaying heritage stone surfaces. In this study, X-ray diffraction analysis, polarized and stereo-microscope and scanning electron microscope were used to study the surface characterization of granite, sandstone and marble, and to assess the efficiency and the effects of the developed condolidants in the field. The developed consolidants used in this experiment are 100%1T1G and 3%40nm/97%1T1G. The effects of consolidants are 3%40nm/97%1T1G${\gg}$100%1T1G in granite, 3%40nm/97%1T1G>100%1T1G in sandstone, and 3%40nm/97% 1T1G=100%1T1G in marble. The characteristics of rock surface when treated with consolidants show different result according to consolidantes type. This result of treating with consolidant can be used for the conservation of an decaying heritage stone.

Non-destructive Analysis of Material Characteristics and Provenance of Granite Monuments: The Cases of Stupa for National Preceptor Wongong at Geodonsa Temple and Five-story Pagoda at Cheonsusa Temple (비파괴 분석을 이용한 화강암류 석조 문화재의 부재특성과 산지추정: 거돈사 원공국사 승묘탑과 천수사 오층석탑을 중심으로)

  • Kim, Yonghwi;Choi, Seongyu;Seo, Jieun;Kang, Jeonggeuk;Lee, Jonghyun;Jo, Yeontae
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.19-40
    • /
    • 2018
  • Most stone monuments in Korea are made from the granitoids found extensively throughout the nation. To identify the provenance of the stone materials, this study carried out comprehensive analyses of the occurrence, physical properties, mineralogy, and chemical composition of Stupa for National Preceptor Wongong at Geodonsa Temple and Five-story Pagoda at Cheonsusa Temple, both located in the Gangwon region. Their features were compared with those of granite from Wonju City near the sites of the two monuments. Stupa for National Preceptor Wongong is composed purely of two-mica granite, whereas Five-story Pagoda was made from both two-mica and biotite granites. The occurrence and magnetic susceptibility of the two granite monuments generally coincide with those of granite from Wonju. When selecting materials for the restoration of stone monuments, it is deemed necessary to carry out a field survey on granite in areas adjacent to the locations of the stone monuments subject to restoration.

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

A study on alluvial deposits of tributaries of Yungsan river, near Damyang. (담양지역 영산강 지류 하천 퇴적층의 특성에 대한 연구)

  • Kim, Jong Yeon;Hong, Se Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.51-70
    • /
    • 2013
  • The characteristics of deposits formed by the Daejon-cheon and Soobuk-cheon, dissecting the mountains such as Byungpung Mt. and Samin Mt. in western part of Damyang county, Jeonmam province. Results from field survey and bore hole logging by KIGAM are used in interpreting depositional environment, in this study. By the result of deposits near of the channels Daejon-cheon and Soobuk-cheon, and main channel of Youngsan River, the depth of sediment layers in this area is 4~7m, far thinner than formerly estimated. Weathered material of local rocks forms the base of the sedimentary layers. It can be assumed that the location channel of the Youngsan river has been stable ever since the start of the sedimentary events. Sediment particles of tributaries are angular than those of Youngsan River. Particles are larger and sorting is poor. It is interpreted as mount flash flood deposits. Main sources of sediments at the valley bottom or deposition dominated area are the terrace deposits or slope deposits over the gentle foot-slope or front of surrounding mountains. Some particles show polygonal cracking on the surface originated from the strong chemical weathering, while most of these has high angularity. It means various geomorphic processes operate to produce and transport the particles in this area.Isolated hills within the sedimentary plains are made with weathered materials of local bedrock. In the case of foot-slope of the hills, thin sedimentary layers are found. So it can be concluded that surface features of deposition zone of the Daejon-cheon and Soobuk-cheon is formed by the filling of lower part of the valley and its feature partly controlled by the relief of the weathering front.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

Identifying Main Forest Environmental Factors to Discern Slow-Moving Landslide-Prone Areas in the Republic of Korea (땅밀림 실태조사 우려지 판정에서의 주요 산지환경 인자 분석)

  • Dongyeob Kim;Sanghoo Youn;Sangjun Im;Jung Il Seo;Taeho Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • This study aimed to analyze the main forest environmental factors affecting the discernment of slow-moving landslide-prone areas in the Republic of Korea, based on data from a detailed landslide survey conducted from 2019 to 2021. Field survey data from 256 sites were collected covering 29 forest environmental factors in seven categories, including geology, soil, and topography. The analysis was conducted using the Random Forest model (AUC = 0.910) and XGBoost model (Accuracy = 0.808, Kappa = 0.594, F1 - measure = 0.494), which were evaluated as having high classification accuracy during the machine learning model development process. Consequently, factors with a high mean decrease Gini (MDG), representing classification importance, were identified as the presence of cracks (average MDG of both models: 22.1), peak elevation (14.8), and the presence of steps (7.0), indicating that these were significant factors in determining slow-moving landslide-prone areas. The presence of cracks and steps aligned well with the characteristics of slow-moving landslides, suggesting that their importance should be emphasized in future detailed landslide surveys. However, the influence of the peak elevation was considered somewhat overestimated due to the characteristics of the input data used in the analysis. These findings are expected to further improve the accuracy and efficiency of final judgments in detailed landslide surveys.

New Geological and Industrial Applications of Anorthosite in the Age of Energy Transition (에너지전환기에서 회장암의 새로운 지질산업적 잠재성)

  • Hyo-Im Kim;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.2
    • /
    • pp.67-76
    • /
    • 2024
  • In light of the development of modern high-tech industries, where human sustainability is becoming increasingly important, anorthosite needs to be reevaluated not only for its potential as a new source of aluminum, but also as a primary resource with a wide range of industrial applications. In particular, a relatively simple chemical composition with a high CaO content and Al2O3/SiO2 ratio, along with its relatively low impurity levels and chemically stable nature offers significant advantages in industrial processes. Thus, anorthosite is considered as an important industrial resource in the age of energy transition. In this review, we examine the mineralogical and geochemical characteristics of anorthosite that determines their stability and reactivity. Based on their characteristics, we propose the potential use of utilizing the anorthosite as an alternative to the Bayer process which has the limitations. We also explore its application as the eco-friendly geo-synthetic materials, and as the new materials for carbon dioxide storage and utilization. As the demand for aluminum applications accelerates, anorthosite is gaining their importance in the geological industry and clean energy field. Therefore, advanced and extensive research on anorthosite complex occurring in the Hadong and Sancheong regions of Korea is critical to obtain opportunities to enhance economic advantages through efficient utilization of national resources and to lead to sustainable development.

A Feasibility Study of AMT Application to Tidal Flat Sedimentary Layer (갯벌 지역의 하부퇴적층에 대한 AMT 탐사의 적용 가능성 평가)

  • Kwon, Byung-Doo;Lee, Choon-Ki;Park, Gye-Soon;Choi, Su-Young;Yoo, Hee-Young;Choi, Jong-Keun;Eom, Joo-Young
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.64-74
    • /
    • 2007
  • The marine seismic prospecting using a research vessel in the shallow sea near the coastal area has certain limits according to the water depth and survey environment. Also, for the electrical resistivity survey at seashore area, one may need a specially designed high-voltage source to penetrate the very conductive surface layer. Therefore, we have conducted a feasibility study on the application of magnetotelluric method (MT), a passive geophysical method, on investigating of shallow marine environment geology. Our study involves both theoretical modeling and field survey at the tidal flat area which represent the very shallow marine environment. We have applied the audio-frequency magnetotelluric (AMT) method to the intertidal deposits of Gunhung Bay, west coast of Korea, and analysed the field data both qualitatively and quantitatively to investigate the morphology and sedimentary stratigraphy of the tidal flat. The inversion of AMT data well reveals the upper sedimentary layer of Holocene intertidal sediments having a range of 13-20 m thickness and the erosional patterns at the unconformable contact boundary. However, the AMT inversion results tend to overestimate the depth of basement (30-50 m) when compared with the seismic section (27-33 m). Since MT responses are not significantly sensitive to the resistivity of middle layer or the depth of basement, the AMT inversion result for basement may have to be adjusted using the comparison with other geophysical information like seismic section or logging data if possible. But, the AMT method can be an effective alternative choice for investigating the seashore area to get important basic informations such as the depositional environment of the tidal flat, sea-water intrusion and the basement structure near the sea shore.