• 제목/요약/키워드: Geological repository of nuclear waste disposal

검색결과 78건 처리시간 0.021초

A Study on Thermal Load Management in a Deep Geological Repository for Efficient Disposal of High Level Radioactive Waste

  • Jongyoul Lee;Heuijoo Choi;Dongkeun Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.469-488
    • /
    • 2022
  • Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300-1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study

  • Ryu, Je Ir;Woo, Seung Min;Lee, Manseok;Yoon, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.130-137
    • /
    • 2022
  • In the geological repository of radioactive nuclear waste, anaerobic corrosion can generate hydrogen, and may conservatively lead to the production of hydrogen-air layer. The accumulated hydrogen may cause a hazardous flame propagation resulting from any potential ignition sources. This study numerically investigates the processes of ignition and flame propagation in the layered mixture. Simple geometry was chosen to represent the geological repository, and reactive flow simulations were performed with different ignition power, energy, and locations. The simulation results revealed the effects of power and energy of ignition source, which were also analyzed theoretically. The mechanism of layered flame propagation was suggested, which includes three stages: propagation into the hydrogen area, downward propagation due to the product gas, and horizontal propagation along the top wall. To investigate the effect of the ignition source location, simulations with eight different positions were performed, and the boundary of hazardous ignition area was identified. The simulation results were also explained through scaling analysis. This study evaluates the potential risk of the accumulated hydrogen in geological repository, and illustrates the layered flame propagation in related ignition scenarios.

사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안 (Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea)

  • 배대석;고용권;이상진;김현주;최병일
    • 방사성폐기물학회지
    • /
    • 제11권2호
    • /
    • pp.157-178
    • /
    • 2013
  • 사용후핵연료 최종처분을 위해 심층처분은 세계적으로 가장 선호되는 방법이다. 이를 위해 선진국들은 자국 여건에 가장 잘 부합되는 고유의 처분시스템 개발에 주력하고 있거나, 일부 확보하여 상용처분사업에 적용하고 있다. 현재까지 알려진 대부분의 심층처분시스템은 공학적 및 천연방벽으로 구성된 다중방벽시스템이다. 이들 처분시스템은 수 천 년 ~ 수 십만 년 이상의 성능기간이 대하여 성능 안전성의 입증이 확인되어야 후속 상용처분사업에 적용 가능하다. 입증 현안과제들은 처분시스템의 상능 안전성 확보를 위해 수행되는 모든 행위 즉, 조사, 분석, 해석, 평가, 설계, 건설, 운영 및 폐쇄에 이르는 전 과정에 있어서 추진 과정과 결과에 대한 실현 가능성과 실증에 필요한 내용들이 해당된다. 이를 위해 대부분의 선진국들은 자국내 분포하는 대표적인 선호암종 지역에서 지하연구시설(URL)을 건설하여 실증 시연프로그램을 수행하거나 완성단계에 있다. 이 과정과 결과들은 후속되는 최종처분장 부지선정 과정에 평가기준으로 활용될 것이며, 최종처분시설의 성능 안전성평가에 필수적으로 적용하게 된다. 지하연구시설은 또한 규제-일반대중-전문가 등 다양한 이해당사자들로 하여금 심층처분의 안전성 수준에 대한 이해제고와 토론의 마당으로서 핵심적인 역할과 기능을 할 것으로 기대된다.

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

심지층 처분시설 설계를 위한 처분터널 및 처분공 간격 분석 (Analysis of the Disposal Tunnel Spacing and Disposal Pit Pitch for the HLW Repository Design)

  • 이종열;김성기;김진웅;최종원;한필수
    • 방사성폐기물학회지
    • /
    • 제3권4호
    • /
    • pp.349-358
    • /
    • 2005
  • 본 연구에서는 고준위 방사성폐기물 심지층 처분시설의 규모 및 layout설정에 필요한 요소인 처분터널 및 처분공 간격에 대한 분석을 수행하였다. 이를 위하여, 기준 처분개념과 공학적 방벽 개념을 바탕으로 다양한 조건의 처분터널 및 처분공 단면을 설정하고, 단층 배치 및 복층 배치 개념 에 따른 처분동굴의 구조적, 열적 안정성을 분석하였다. 분석 결과를 바탕으로 설계에 있어서 주요한 고려인자 중의 하나인 굴착량을 감소시킬 수 있는 처분동굴 및 처분공 간격을 제안하였다. 본 연구의 결과는 심지층 처분시설 설계시 활용될 것이며, 향후, 부지에 대한 불확실성을 줄이기 위하여 정확한 부지특성 자료를 통한 상세한 분석이 필요하다.

  • PDF

Nuclear Criticality Analyses of Two Different Disposal Canisters for Deep Geological Repository Considering Burnup Credit

  • Hyungju Yun;Manho Han;Seo-Yeon Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.501-510
    • /
    • 2022
  • The nuclear criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of SNF disposal canister: the KBS-3 canister and small standardized transportation, aging and disposal (STAD) canister. Firstly, the KBS-3 & STAD canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.79108, 0.78803, and 0.78484 & 0.76149, 0.75683, and 0.75444, respectively. Secondly, the KBS-3 & STAD canister with four SNFs of 4.5wt% and 55,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.78067, 0.77581, and 0.77335 & 0.75024, 0.74647, and 0.74420, respectively. Therefore, all cases met the performance criterion with respect to the keff value, 0.95. The STAD canister had the lower keff values than KBS-3. The neutron absorber plates in the STAD canister significantly affected the reduction in keff values although the distance among the SNFs in the STAD canister was considerably shorter than that in the KBS-3 canister.