• 제목/요약/키워드: Geographically Weighted Poisson Regression(GWPR)

검색결과 2건 처리시간 0.009초

공간가중 포아송 회귀모형을 이용한 고병원성 조류인플루엔자 발생에 영향을 미치는 결정인자의 공간이질성 분석 (Application of a Geographically Weighted Poisson Regression Analysis to Explore Spatial Varying Relationship Between Highly Pathogenic Avian Influenza Incidence and Associated Determinants)

  • 최성현;박선일
    • 한국임상수의학회지
    • /
    • 제36권1호
    • /
    • pp.7-14
    • /
    • 2019
  • In South Korea, six large outbreaks of highly pathogenic avian influenza (HPAI) have occurred since the first confirmation in 2003 from chickens. For the past 15 years, HPAI outbreaks have become an annual phenomenon throughout the country and has extended to wider regions, across rural and urban environments. An understanding of the spatial epidemiology of HPAI occurrence is essential in assessing and managing the risk of the infection; however, local spatial variations of relationship between HPAI incidences in Korea and related risk factors have rarely been derived. This study examined whether spatial heterogeneity exists in this relationship, using a geographically weighted Poisson regression (GWPR) model. The outcome variable was the number of HPAI-positive farms at 252 Si-Gun-Gu (administrative boundaries in Korea) level notified to government authority during the period from January 2014 to April 2016. This response variable was regressed to a set of sociodemographic and topographic predictors, including the number of wild birds infected with HPAI virus, the number of wintering birds and their species migrated into Korea, the movement frequency of vehicles carrying animals, the volume of manure treated per day, the number of livestock farms, and mean elevation. Both global and local modeling techniques were employed to fit the model. From 2014 to 2016, a total of 403 HPAI-positive farms were reported with high incidence especially in western coastal regions, ranging from 0 to 74. The results of this study show that local model (adjusted R-square = 0.801, AIC = 954.5) has great advantages over corresponding global model (adjusted R-square = 0.408, AIC = 2323.1) in terms of model fitting and performance. The relationship between HPAI incidence in Korea and seven predictors under consideration were significantly spatially non-stationary, contrary to assumptions in the global model. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the HPAI and associated determinants. We demonstrated that an empirically derived GWPR model has the potential to serve as a useful tool for assessing spatially varying characteristics of HPAI incidences for a given local area and predicting the risk area of HPAI occurrence. Considering the prominent burden of HPAI this study provides more insights into spatial targeting of enhanced surveillance and control strategies in high-risk regions against HPAI outbreaks.

도로네트워크 특성과 차대사람 사고발생 빈도간의 관련성 분석 : 서울시를 사례로 (Effects of Road Networks on Vehicle-Pedestrian Crashes in Seoul)

  • 박세현;고승영;김동규;박호철
    • 한국ITS학회 논문지
    • /
    • 제19권2호
    • /
    • pp.18-35
    • /
    • 2020
  • 차대사람 사고는 인적 요인, 차량 요인, 도로 환경적 요인 등 다양한 요인이 복합적으로 작용하여 발생한다. 도로 환경적 요인은 차대사람 사고 발생에 상당한 영향을 미치는 것으로 알려져 있으며 인적 요인과 차량 요인에 비해 대책 수립이 용이하여 분석 결과의 활용성이 높다. 도로 환경적 요인 중 도로 네트워크 특성은 운전자와 보행자의 행태에 영향을 미치며 두 이동체 간 상충 특성에 관여하여 사고를 발생시킨다. 서울시와 같은 대도시는 지역별 도로 네트워크 형태가 상이하여 사고 모형 구축 시 지역별 특성을 고려할 필요가 있다. 본 연구에서는 도로 네트워크 특성을 반영하기 위해 도로의 위계, 교차로 밀도, 교차로 특성을 변수로 반영하였다. 또한, 공간가중 포아송회귀모형을 사용하여 지역별 차대사람 사고에 대한 도로 네트워크의 영향을 분석하였다. 분석 결과, 도로 네트워크 특성에 따른 사고발생 영향이 유사한 행정동 집단을 선별할 수 있었다. 결과를 바탕으로 지역별 도로 네트워크 특성에 따른 운전자와 보행자의 상충 특성을 검토하고 지역별 개선점을 제시할 수 있었다.