• Title/Summary/Keyword: Geo/Geo/1/1

Search Result 1,467, Processing Time 0.035 seconds

Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia (동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가)

  • Byeon, Yugyeong;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1829-1836
    • /
    • 2021
  • Cloud detection means determining the presence or absence of clouds in a pixel in a satellite image, and acts as an important factor affecting the utility and accuracy of the satellite image. In this study, among the satellites of various advanced organizations that provide cloud detection data, we intend to perform quantitative and qualitative comparative analysis on the difference between the cloud detection data of GK-2A/AMI, Terra/MODIS, and Suomi-NPP/VIIRS. As a result of quantitative comparison, the Proportion Correct (PC) index values in January were 74.16% for GK-2A & MODIS, 75.39% for GK-2A & VIIRS, and 87.35% for GK-2A & MODIS in April, and GK-2A & VIIRS showed that 87.71% of clouds were detected in April compared to January without much difference by satellite. As for the qualitative comparison results, when compared with RGB images, it was confirmed that the results corresponding to April rather than January detected clouds better than the previous quantitative results. However, if thin clouds or snow cover exist, each satellite were some differences in the cloud detection results.

A Case Study on the Calculation of Greenhouse Gas Emissions in Research and Development Activities of Geo-Technology in Korea: A Study on the Basic Projects of the Korea Institute of Geoscience and Mineral Resources (지질자원기술분야 연구개발활동 온실가스 배출량 산정 사례연구 - 한국지질자원연구원 기본사업을 대상으로 -)

  • Seong-Yong Kim;Chul-Ho Heo;Il-Hwan Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.147-166
    • /
    • 2023
  • This study aimed to develop and apply guidelines for calculating greenhouse gas emissions to activate the contribution of the Korea Institute of Geoscience and Mineral Resources (KIGAM) for institutional-level research activities. In addition, we intended to improve awareness by identifying greenhouse gas emissions from KIGAM's basic research and development (R&D) activities in fiscal 2022. Herein, the research plan and budget contents of individual projects were analyzed, whilst the boundaries and scopes of greenhouse gas emissions were determined, with 22 cases being derived as either direct, indirect, or other sources of emissions. Subsequently, research activity emissions were calculated by emission source. The greenhouse gas emissions of KIGAM's 2022 basic project R&D activities were 2,041.506 tCO2eq, of which direct emissions were 793.235 tCO2eq (38.86%), indirect emissions comprised 305.647 tCO2eq (14.97%), whilst other emissions were 942.624 tCO2eq (46.18%). In particular, greenhouse gas emissions per 100 million won in the KIGAM's basic projects for fiscal 2022 (a total of 96.661 billion won) was calculated as 2.11 tCO2eq, whilst greenhouse gas emissions per participating researcher (was 4.800 tCO2eq. Such calculations should be carried out annually rather than once and accumulated for at least 5 years. Accordingly, it will be possible to standardize specific matters that influence emissions according to differences in research field characteristics and methods, thus guiding greenhouse gas emission reduction management in the future and evaluating the contributions of Environmental, Social and Governance (ESG) management to the environmental sector.

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea (부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인)

  • Choo, Chang-Oh;Hamm, Se-Yeong;Lee, Jeong-Hwan;Lee, Chung-Mo;Choo, Youn-Woo;Han, Suk-Jong;Kim, Moo-Jin;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.67-81
    • /
    • 2012
  • The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

Increment of Germanium Contents in Angelica keiskei Koidz. and Panax ginseng G.A. Meyer by In Vitro Propagation (명일엽(明日葉)(신선초(神仙草)) 및 인삼(人蔘)의 기내배양(器內培養)을 통한 Germanium 함량(含量) 증대(增大))

  • Lee, Man-Sang;Lee, Joong-Ho;Kwon, Tae-Oh;Namkoong, Seung-Bak
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.3
    • /
    • pp.251-258
    • /
    • 1995
  • This study was carried out to find optimum concentration of germanium compounds and pH of medium on the induction and growth of callus from A. keiskei and P. ginseng and to intend to increase Ge. absorption by calli while those calli were subculturing on MS medium. Callus from a. keiskei was rarely induced under light condition. Under dark condition, callus in­duction from A. keiskei was good up to 5ppm, retarded at 50ppm of $GeO_2$, or C. E. Ge. O., and rarely done at 100 ppm of $GeO_2$ but was somewhat well at 100 ppm of C. E. Ge. O. The induction and growth of callus was good in order of pH 5. 7 > pH 5. 4 > pH 6. 0 Under light condition, the growth of callus induced from P. ginseng was poor at $1{\sim}10\;ppm$ of $GeO_2$, or C. E. Ge. O., but shooting from callus occurred frequently. Under dark condtion, the growth of callus from A. keiskei was good up to 5 ppm of $GeO_2$, or C. E. Ge. O. and was rarely done at 50 ppm of $GeO_2$, but was somewhat well even at 100 ppm of C. E. Ge. O. Shooting from callus occurred frequently in a. keiskei, especially at pH 5.7. The growth of callus from P. ginseng was poor at 10 ppm of $GeO_2$, or 50 ppm of C. E. Ge. O. Under dark condition, the amount of Ge absorption by callus induced from A. keiskei was much high­er than that from P. ginseng. The amount of Ge. absorption by callus treated with $GeO_2$, was higher than that treated with C. E. Ge. O.

  • PDF

Distribution and Sources of Pb in Southern East/Japan Sea Sediments using Pb isotopes (동해 남부 해역 퇴적물에서 Pb동위원소를 이용한 Pb의 기원 추적 연구)

  • Choi Man Sik;Cheong Chang-Sik;Han Jeong Hee;Park Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.63-74
    • /
    • 2006
  • In order to identify the Pb pollution and its sources in continental shelf and slope areas, Pb concentration and Pb isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were determined far 6 box corer sediments collected from the southern East/japan Sea. Pb concentration, and $^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$ ratios were constant at around $25\pm5 ppm$ and 0.842 and 2.092 from 1700 to 1930 year, respectively and increased steadily up to $40\pm5 ppm$ and 0.867 and 2.123 at the beginning of 1990s', respectively. The increase of concentration and isotope ratios in the labile fraction (leached by 2M HC1+0.5M $HNO_3$) explains their increase in bulk sediments, while Pb concentration and isotope ratios in the residual fraction were nearly constant during 300yrs. Temporal variation of Pb isotope ratios was explained by simple two end-members mixing of geo-genic and anthropogenic sources because isotope ratios and the inverse of Pb concentration showed the good linear relationships. Using Pb isotope ratios, we can constrain two Pb sources in the study area. The one is atmospheric particulates, compared with mean values of isotope ratios in atmospheric particulates collected at Jeju and Oki ;stands, based on the history of Pb emmission in Korea and China, and judged by oceanographic processes capable of homogenizing many sources. The other is local sources related to iron mills, refineries of Pb ore and of petroleum located at the coast of the study area. Isotope ratios of anthropogenic Pb can be estimated using two end-members mixing equation and were $0.879\pm0.005\;and\;2.144\pm0.008$ before 1950s' while they increased up to $0.900\pm0.008\;and\;2.162\pm0.011$ after 1980s', respectively.

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication (영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경)

  • KIM, YOUNG-GIL;CHANG, JIN HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.88-102
    • /
    • 2017
  • Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.