• Title/Summary/Keyword: Genre Classification

Search Result 130, Processing Time 0.021 seconds

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification (음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘)

  • Choi, Tack-Sung;Moon, Sun-Kook;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.111-118
    • /
    • 2008
  • In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.

A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering (Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구)

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.115-120
    • /
    • 2005
  • In this paper, we propose a new robust content-based musical genre classification algorithm using multi-feature clustering(MFC) method. In contrast to previous works, this paper focuses on two practical issues of the system dependency problem on different input query patterns(or portions) and input query lengths which causes serious uncertainty of the system performance. In order to solve these problems, a new approach called multi-feature clustering(MFC) based on k-means clustering is proposed. To verify the performance of the proposed method, several excerpts with variable duration were extracted from every other position in a queried music file. Effectiveness of the system with MFC and without MFC is compared in terms of the classification accuracy. It is demonstrated that the use of MFC significantly improves the system stability of musical genre classification performance with higher accuracy rate.

Musical Genre Classification System based on Multiple-Octave Bands (다중 옥타브 밴드 기반 음악 장르 분류 시스템)

  • Byun, Karam;Kim, Moo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.238-244
    • /
    • 2013
  • For musical genre classification, various types of feature vectors are utilized. Mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), and octave-based spectral contrast (OSC) are widely used as short-term features, and their long-term variations are also utilized. In this paper, OSC features are extracted not only in the single-octave band domain, but also in the multiple-octave band one to capture the correlation between octave bands. As a baseline system, we select the genre classification system that won the fourth place in the 2012 music information retrieval evaluation exchange (MIREX) contest. By applying the OSC features based on multiple-octave bands, we obtain the better classification accuracy by 0.40% and 3.15% for the GTZAN and Ballroom databases, respectively.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Multiple octave-band based genre classification algorithm for music recommendation (음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1487-1494
    • /
    • 2011
  • In this paper, a novel genre classification algorithm is proposed for music recommendation system. Especially, to improve the classification accuracy, the band-pass filter for octave-based spectral contrast (OSC) feature is designed considering the psycho-acoustic model and actual frequency range of musical instruments. The GTZAN database including 10 genres was used for 10-fold cross validation experiments. The proposed multiple-octave based OSC produces better accuracy by 2.26% compared with the conventional OSC. The combined feature vector based on the proposed OSC and mel-frequency cepstral coefficient (MFCC) gives even better accuracy.

Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents (학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도)

  • Lee, Yong-Bae
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.325-332
    • /
    • 2014
  • It is generally accepted that classification accuracy is affected by the number of learning documents, but there are few studies that show how this influences automatic text classification. This study is focused on evaluating the deviation-based classification model which is developed recently for genre-based classification and comparing it to other classification algorithms with the changing number of training documents. Experiment results show that the deviation-based classification model performs with a superior accuracy of 0.8 from categorizing 7 genres with only 21 training documents. This exceeds the accuracy of Bayesian and SVM. The Deviation-based classification model obtains strong feature selection capability even with small number of training documents because it learns subject information within genre while other methods use different learning process.

Alternative Music - Ambiguity of Genre & Beat Generation (얼터너티브 음악 - 장르의 모호함과 비트 제너레이션)

  • Kim, Sung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4212-4217
    • /
    • 2013
  • Since genre of popular music began to classified, Alternative Music has been music form with most complex and diverse sub genre. This paper focused on mostly Alternative Rock, which began to attract attention since the 1990's, and analysed the cause for ambiguity of this genre. Therefore we can examine the inevitable limitation of traditional - based on musical form only - classification.

Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System (지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구)

  • Park, Jun-Heong;Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • Various research studies are underway to explore music classification by genre. Because sound professionals define the criterion of music to categorize differently each other, those classification is not easy to come up clear result. When a new genre is appeared, there is onerousness to renew the criterion of music to categorize. Therefore, music is classified by emotional adjectives, not genre. We classified music by light and shade in precedent study. In this paper, we propose the music classification system that is based on emotional adjectives to suitable search for atmosphere, and the classification criteria is three kinds; light and shade in precedent study, intense and placid, and grandeur and trivial. Variance Considered Machines that is an improved algorithm for Support Vector Machine was used as classification algorithm, and it represented 85% classification accuracy with the result that we tried to classify 525 songs.

Music Genre Classification based on Musical Features of Representative Segments (대표구간의 음악 특징에 기반한 음악 장르 분류)

  • Lee, Jong-In;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.692-700
    • /
    • 2008
  • In some previous works on musical genre classification, human experts specify segments of a song for extracting musical features. Although this approach might contribute to performance enhancement, it requires manual intervention and thus can not be easily applied to new incoming songs. To extract musical features without the manual intervention, most of recent researches on music genre classification extract features from a pre-determined part of a song (for example, 30 seconds after initial 30 seconds), which may cause loss of accuracy. In this paper, in order to alleviate the accuracy problem, we propose a new method, which extracts features from representative segments (or main theme part) identified by structure analysis of music piece. The proposed method detects segments with repeated melody in a song and selects representative ones among them by considering their positions and energies. Experimental results show that the proposed method significantly improve the accuracy compared to the approach using a pre-determined part.