• Title/Summary/Keyword: Genomic research

Search Result 1,286, Processing Time 0.032 seconds

Isolation of a Variant Strain of Pleurotus eryngii and the Development of Specific DNA Markers to Identify the Variant Strain

  • Lee, Hyun-Jun;Kim, Sang-Woo;Ryu, Jae-San;Lee, Chang-Yun;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • A degenerated strain of Pleurotus eryngii KNR2312 was isolated from a commercial farm. Random amplified polymorphic DNA analysis performed on the genomic DNA of the normal and degenerated strains of this species revealed differences in the DNA banding pattern. A unique DNA fragment (1.7 kbp), which appeared only in the degenerated strain, was isolated and sequenced. Comparing this sequence with the KNR2312 genomic sequence showed that the sequence of the degenerated strain comprised three DNA regions that originated from nine distinct scaffolds of the genomic sequence, suggesting that chromosome-level changes had occurred in the degenerated strain. Using the unique sequence, three sets of PCR primers were designed that targeted the full length, the 5' half, and the 3' half of the DNA. The primer sets P2-1 and P2-2 yielded 1.76 and 0.97 kbp PCR products, respectively, only in the case of the degenerated strain, whereas P2-3 generated a 0.8 kbp product in both the normal and the degenerated strains because its target region was intact in the normal strain as well. In the case of the P2-1 and P2-2 sets, the priming regions of the forward and reverse primers were located at distinct genomic scaffolds in the normal strain. These two primer sets specifically detected the degenerate strain of KNR2312 isolated from various mushrooms including 10 different strains of P. eryngii, four strains of P. ostreatus, and 11 other wild mushrooms.

Mutation Spectra of BRCA Genes in Iranian Women with Early Onset Breast Cancer - 15 Years Experience

  • Yassaee, Vahid Reza;Ravesh, Zeinab;Soltani, Ziba;Hashemi-Gorji, Feyzollah;Poorhosseini, Seyed Mohammad;Anbiaee, Robab;Joulaee, Azadeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.149-153
    • /
    • 2016
  • Breast cancer is the most common cancer in Iran. In the recent years an upward trend has been observed in the Iranian population. Early detection by molecular approaches may reduce breast cancer morbidity and mortality. We provided consultation to 3,782 women diagnosed with early onset breast cancer during the past 15 years (1999-2014). To establish a data set for BRCA gene alterations of the Iranian families at risk, two hundred and fifty four women who met our criteria were analyzed. A total number of 46 alterations including 18 variants with unknown clinical significance (39.1%), 18 missense mutations (39.1%), 7 Indels (15.2%) and 3 large rearrangement sequences (6%) were identified. Further scanning of affected families revealed that 49% of healthy relatives harbor identical causative mutations. This is the first report of comprehensive BRCA analysis in Iranian women with early onset breast cancer. Our findings provide valuable molecular data to support physicians as well as patients for the best decision making on disease management.

A genomic and bioinformatic-based approach to identify genetic variants for liver cancer across multiple continents

  • Muhammad Ma'ruf;Lalu Muhammad Irham;Wirawan Adikusuma;Made Ary Sarasmita;Sabiah Khairi;Barkah Djaka Purwanto;Rockie Chong;Maulida Mazaya;Lalu Muhammad Harmain Siswanto
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.48.1-48.8
    • /
    • 2023
  • Liver cancer is the fourth leading cause of death worldwide. Well-known risk factors include hepatitis B virus and hepatitis C virus, along with exposure to aflatoxins, excessive alcohol consumption, obesity, and type 2 diabetes. Genomic variants play a crucial role in mediating the associations between these risk factors and liver cancer. However, the specific variants involved in this process remain under-explored. This study utilized a bioinformatics approach to identify genetic variants associated with liver cancer from various continents. Single-nucleotide polymorphisms associated with liver cancer were retrieved from the genome-wide association studies catalog. Prioritization was then performed using functional annotation with HaploReg v4.1 and the Ensembl database. The prevalence and allele frequencies of each variant were evaluated using Pearson correlation coefficients. Two variants, rs2294915 and rs2896019, encoded by the PNPLA3 gene, were found to be highly expressed in the liver tissue, as well as in the skin, cell-cultured fibroblasts, and adipose-subcutaneous tissue, all of which contribute to the risk of liver cancer. We further found that these two SNPs (rs2294915 and rs2896019) were positively correlated with the prevalence rate. Positive associations with the prevalence rate were more frequent in East Asian and African populations. We highlight the utility of this population-specific PNPLA3 genetic variant for genetic association studies and for the early prognosis and treatment of liver cancer. This study highlights the potential of integrating genomic databases with bioinformatic analysis to identify genetic variations involved in the pathogenesis of liver cancer. The genetic variants investigated in this study are likely to predispose to liver cancer and could affect its progression and aggressiveness. We recommend future research prioritizing the validation of these variations in clinical settings.

Use of Clostridium septicum Alpha Toxins for Isolation of Various Glycosylphosphatidylinositol-Deficient Cells

  • Shin Dong-Jun;Choy Hyon E.;Hong Yeongjin
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.266-271
    • /
    • 2005
  • In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Topography of Post-Genomic Researches in Korea: Governance and Institutional Polymorphism (포스트게놈 시대의 국내 유전체연구 현황: 한국적 거버넌스의 제도적 다형성 연구)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.15 no.1
    • /
    • pp.145-180
    • /
    • 2015
  • Human Genome Project was a big science done by United States, U.K., France, China, Germany and Japan. But in Korea HGP was not constructed because of lack of governmental funding and failure to attract relevant actors' attention in spite of small voices from early genome researchers and some family members of patients with incurable diseases. This article does not argue that HGP in Korea was an undone science, a concept claimed by Scott Frickel, et al. Instead, it shows the historical fact that HGP was not constructed in Korea in 1990s and analyzes how genomic researches could become possible in Korea in the post-genomic age using the framework of triple-helix. In Korea, researchers have constructed hybrid networks and organizations that intermingles laboratories of university, industry, and government to conduct genomic researches which requires a lot of financial funding. This structure is different from the entrepreneurial university seen in developed countries such as the United States. Using two examples, this article shows that founding a start-up company by university researchers was not an option as in the United States, but a necessity in order to obtain enough funding to conduct genomic researches in Korea. Otherwise, researchers in Korean universities had to form hybrid networks with government to obtain small amount of funds to conduct researches. I argue that this phenomenon shows multifaceted characteristics of institutional structures regarding genomic researches in Korea.

The +1316 T/T Genotype in the Exon 3 of Uncoupling Protein Gene is Associated with Daily Percent Lay in Korean Native Chicken (한국 재래 닭의 Uncoupling Protein 유전자 Exon 3에서의 +1316 T/T 유전자형이 산란율에 미치는 효과 분석)

  • Oh J. D.;Lee J. H.;Hong Y. S.;Lee S. J.;Lee S. G.;Kong H. S.;Sang B. D.;Choi C. H.;Cho B. W.;Jeon G. J.;Lee H. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • Uncoupling protein(UCP) is expressed exclusively in brown adipose tissue(BAT). It is blown to uncouple phosphorylation from oxidation and hence to be involved in energy metabolism and heat production, especially under cold exposure. In the present study, we identified single nucleotide polymorphism(SNP) in exon 3 of avUCP gene in Korean native chicken(KNC) population. It was detected a SNP T+1316C in exon 3 of avUCP gene by sequence analysis in KNC population. For PCR-RFLP analysis of the SNP T+1316C, used by AP III restriction enzyme. The result of PCR-RFLP analysis showed that allele T has two fragments of 255 bp and 86 bp, and allele C has only one fragment of 341 bp. The genotype frequencies were TT type, 0.7875; TC type, 0.1875 and CC type, 0.025; and the frequencies of allele T and C were 0.881 and 0.119, respectively in KNC population. Next study was conducted to investigate the effect of the SNP in avUCP gene on economic traits in the KNC population. The TT genotype had a significant higher daily percent lay(84.61) than CC genotype(p<0.05) in KNC population. This study may be useful for genetic studies of avCUP gene and selection on daily percent lay of KNC.