• Title/Summary/Keyword: Genomic library

Search Result 284, Processing Time 0.022 seconds

Repeated Random Mutagenesis of ${\alpha}$-Amylase from Bacillus licheniformis for Improved pH Performance

  • Priyadharshini, Ramachandran;Manoharan, Shankar;Hemalatha, Devaraj;Gunasekaran, Paramasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1696-1701
    • /
    • 2010
  • The ${\alpha}$-amylases activity was improved by random mutagenesis and screening. A region comprising residues from the position 34-281 was randomly mutated in B. licheniformis ${\alpha}$-amylase (AmyL), and the library with mutations ranging from low, medium, and high frequencies was generated. The library was screened using an effective liquid-phase screening method to isolate mutants with an altered pH profile. The sequencing of improved variants indicated 2-5 amino acid changes. Among them, mutant TP8H5 showed an altered pH profile as compared with that of wild type. The sequencing of variant TP8H5 indicated 2 amino acid changes, Ile157Ser and Trp193Arg, which were located in the solvent accessible flexible loop region in domain B.

Experimental development of the epigenomic library construction method to elucidate the epigenetic diversity and causal relationship between epigenome and transcriptome at a single-cell level

  • Park, Kyunghyuk;Jeon, Min Chul;Kim, Bokyung;Cha, Bukyoung;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2022
  • The method of single-cell RNA sequencing has been rapidly developed, and numerous experiments have been conducted over the past decade. Their results allow us to recognize various subpopulations and rare cell states in tissues, tumors, and immune systems that are previously unidentified, and guide us to understand fundamental biological processes that determine cell identity based on single-cell gene expression profiles. However, it is still challenging to understand the principle of comprehensive gene regulation that determines the cell fate only with transcriptome, a consequential output of the gene expression program. To elucidate the mechanisms related to the origin and maintenance of comprehensive single-cell transcriptome, we require a corresponding single-cell epigenome, which is a differentiated information of each cell with an identical genome. This review deals with the current development of single-cell epigenomic library construction methods, including multi-omics tools with crucial factors and additional requirements in the future focusing on DNA methylation, chromatin accessibility, and histone post-translational modifications. The study of cellular differentiation and the disease occurrence at a single-cell level has taken the first step with single-cell transcriptome and is now taking the next step with single-cell epigenome.

Molecular Cloning of Human Genomic DNA for Epinephrine Synthesizing Enzyme, Phenylethanolamine N-Methyltransferase (Epinephrine 합성효소인 phenylethanolamine N-methyltransferase의 인간 genomic DNA의 유전자 크로닝)

  • Suh, Yoo-Hun;Huh, Sung-Oh;Chun, Yang-Sook;Kim, Hun-Sik;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1988
  • To obtain information about the structure of the human phenylethanolamin N-methyltransferase (PNMT) and to further define the extent of the evolutionary relationships among PNMT molecules of several spesies, a full length cDNA clone for bovine adrenal PNMT was used to screen a charon 4A genomic library. One phage was isolated and identified, which included the entire PNMT gene. The length of inserted genomic DNA was 13.1-Kilobase (Kb) containing two internal EcoRI sites. Construction of a restriction map and subsequent Southern and dot blot analysis with 5'-and3'-specific cDNA probes allowed the identification of exon-containing fragments. This is the first report of the cloning of gene for human epinephrine synthesizing enzyme.

  • PDF

Development of Repetitive DNA Probes for Genetic Analysis of Phytophthora capsici (Phytophthora capsici의 유전적 특성 분석을 위한 Repetitive DNA Probe의 개발)

  • Song, Jeong-Young;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 2002
  • To develop DNA markers for analysis of genetic characteristics of Phytophthora capsici population, randomly selected clones from HindIII-digested genomic DNA library of P. capsici 95CY3119 were surveyed by hybridizing to Southern blots of HindIII-digested total genomic DNA of P. capsici. Probe DNAs inserted into selected individual clones strongly hybridized with HindIII digests of P. capsici. Among probes examined, PC9 revealed the repetitive and highly polymorphic bands to HindIII digests of inter-and intra-field P. capsici isolates. Genetic diversity of individual isolates was also clearly revealed in cluster analysis based on its band patterns. The other probe, PC22, was hybridized only to DNA from P. capsici and this was highly repetitive. However, there was no response to other Phytophthora species and Pythium sp. These DNA probes could be used as very useful markers in analysing genetic diversity and identification for P. capsici population throughout the world.

Molecular Cloning of nifHD from Rhizobium sp. SNU003 (Rhizobium sp. SNU003의 nifHD 클로닝)

  • 강명수;안정선
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • Genes for dinitrogenase reductase (nifH) and dinitogenase a subunit (nifD) were found to be located on 7.9 kb of EcoRI, 6.5 kb of Sail, 7.3 kb of HindlII and 4.4 kb of Pstl fragments of the genomic blot of Rhizobium sp. SNU003. a symbiotic strain from root nodule of Canavalia lineata. Nine recombinant phage nif-clones were selected from the genomic library constructed by using EMBL-3 BamHI arms of bacteriophage lambda. Among them. Rnif-6 had insert DNA of 15.3 kb. in which 7.6 kb of BamHI!SacI fragment contained nifHD region. Therefore, the 7.6 kb fragment was subcloned into pUC19 and partial restriction map was constructed. As the results, nifH and nifD were found to be located continuously on 4.5 kb of BamHI/BglIl in the genome of Rhizobium sp. SNU003 strain.

  • PDF

Construction of Complementary DNA Library and cDNA Cloning for Cy Strain of Odontoglossum Ringspot Virus Genomic RNA (오돈토글로썸 윤문 바이러스 Cy계통 게놈 RNA의 cDNA 구축 및 유전자 크로닝)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 1994
  • Genomic RNA was extracted from Cy strain of odontoglossum ringspot tobamovirus (ORSV-Cy) isolated from infected leaves of tobacco cv. Samsun. Size of the genomic RNA was about 6.6 kb in length. The genomic RNA was fractionated using Sephadex G-50 column chromatography into 2 fractions. They were polyadenylated at their 3'-end using E. coli poly(A) polymerase. Polyadenylated viral RNA was recovered by oligo (dT) primer adapter containing NotI restriction site and Moloney murine leukemia virus SuperScript reverse transcriptase (RNase H-). Second-strand cDNA was synthesized by using E. coli DNA ligase, E. coli DNA polymerase I and E. coli RNase H. Recombinant plasmids containing cDNAs for ORSV-Cy RNA ranged from about 800 bp to 3,000 bp. Among the selected 238 recombinants, pORCY-124 clone was the largest one covering 3'-terminal half of the viral RNA. This clone contained two restriction sites for EcoRI and XbaI and one site for AccI, AvaI, BglII, BstXI, HindIII, PstI, and TthIII 1. respectively. The clone contained partial viral replicase, a full-length movement protein and a complete coat protein genes followed by a 3' untranslated region of 414 nucleotides based on restriction mapping and nucleotide sequencing analyses. Clones pORCY-028, -068, -072, -187 and -224 were overlapped with the pORCY-124. Clones pORCY-014 and -095 covered 5' half upstream from the middle region of the viral RNA, which was estimated based on restriction mapping and partial sequence analysis. Constructed cDNA library covered more than 90% of the viral genome.

  • PDF

Molecular Cloning of nod Genes from Bradyrhizobium sp. SNU001 (Bradyrhizobium sp. SNU001 nod 유전자 클로닝)

  • 고세리;심웅섭;안정선
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.246-251
    • /
    • 1992
  • Molccular cloning of nod genes from Bradvrhizobium sp. SNU001, a nitrogen-fixing symbiont isolated from thc root nodules of soybean (Clycine trim) . was carried out. nod genes were found to be located on thc genome of the symbiont by gcnomic hybridization with 4.5 kb EcoRI/HndIII fragment (nod DABC) of Rhizohium meliloti as probe. Genomic library of this symbiont was constructed using h phage EMBL3-BanlHI vector. from which five nod positive clones were sclectcd by primary and secondary screening methods. The partial restriction map of inserted genomic DNA of h CNS-l(c1one 2) was constructed. and 3.9 kh Bun7HI fragment. which showed strong hybridization signal to the probe, was subcloned into pBS KS(+) plasmid vector. Partial restriction inap ot' a selected subclone (pBjCNS-I) was constructed and nod DABC was found to be located on the 1.8 kb KpnI/Sacl fragment of this subclone.

  • PDF

Isolation and Characterization of the nsdC Gene in Sexual Development of Aspergillus nidulans (Aspergillus nidulans의 유성분화에 관여하는 nsdC 유전자의 분리 및 분석)

  • Kim, Hye-Ryun;Han, Dong-Min
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.246-251
    • /
    • 2006
  • A lot of mutants which cannot initiate sexual development were screened and several loci including nsdA, nsdB, nsdC, and nsdD were identified in homothallic ascomycetes Aspergillus nidulans. The NSD206, which has nsdC6 allele, showed typical phenotype of NSD (Never in sexual development) mutants. The nsdC gene was cloned by transforming NSDP697 ($nsdC^-$, $pryG^-$) with AMA1-NotI genomic library. The transforming library DNA recovered from several transformants showing wild phenotype carried about 10 kb genomic DNA insert. The DNA sequence of nsdC was analysed using GPS (Genome priming system). The nsdC gene has an open reading frame (ORF) of 1,929 bp encoding a putative polypeptide of 643 amino acids. The NsdC carries $C_2H_2C_2H_2C_2HC$ type zinc finger DNA binding domains in the middle of the polypeptide. A coiled-coil domain at its C terminus were also found. In nsdC6 allele, a single T insertion was occurred between 407-408 bp leading to the frameshift mutation and early termination of translation producing the truncated protein which has only 139 amino acids.

Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse (인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작)

  • Lee, Hee-kyung;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

Genomic DNA probe and purification of Theileria sergenti merozoites in Korean cattle (한우에 감염된 Theileria sergenti merozoite의 순수분리와 genomic DNA probe에 관한 연구)

  • Chae, Joon-seok;Lee, Joo-mook;Kwon, Oh-deog;Chae, Keon-sang
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.387-394
    • /
    • 1994
  • To make the genomic DNA probe of Theileria sergenti, the merozoites were purified from bovine erythrocytes. The infected erythrocytes were lysed by Aeromonas hydrophila(Ah-1) hemolysin, and the parasites were isolated by ultracentrifugation on a Percoll discontinuous density gradient. For construction of a T sergenti genomic DNA library, T sergenti DNA was digested with Pstl and the fragments were ligated into the PstI site of pUC19 before transformation of Escherichia coli JM83. Out of thousands of transformants obtained by transformation of E coli JM83 with the genomic library, three plasmids were chosen. The sizes of the inserted DNAs were 2.9kb(2.4kb and 0.5kb) in pKTS1, 4.3kb in pKTS2 and 1.5kb in pKTS3, respectively. The DNA fragments used as probe KTS1(2.4kb), KTS2(4.3kb) and KTS3(1.5kb) were labeled digoxigenin-11-dUTP for the Southern hybridization. In Southern hybridization, all of the probes(KTS1, KTS2 and KTS3) reacted specifically to T sergenti DNA, but not to bovine leucocyte DNA. In order to find out the sensitivities of the digoxigenin-11-dUTP-labeled KTS1 and KTS3 as the probes, purified merozoite DNA and bovine DNA (control) were checked by dot blot hybridization with the probes. Both of the probes, KTS1 and KTS3, detected as minimum amount of 975pg of the T sergenti DNA, but not bovine DNA even to 500ng.

  • PDF