• Title/Summary/Keyword: Genomic cohort research

Search Result 20, Processing Time 0.028 seconds

Ethical Considerations in Genomic Cohort Study (유전체 코호트 연구의 윤리적 고려 사항)

  • Choi, Eun-Kyung;Kim, Ock-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.122-129
    • /
    • 2007
  • During the last decade, genomic cohort study has been developed in many countries by linking health data and genetic data in stored samples. Genomic cohort study is expected to find key genetic components that contribute to common diseases, thereby promising great advance in genome medicine. While many countries endeavor to build biobank systems, biobank-based genome research has raised important ethical concerns including genetic privacy, confidentiality, discrimination, and informed consent. Informed consent for biobank poses an important question: whether true informed consent is possible in population-based genomic cohort research where the nature of future studies is unforeseeable when consent is obtained. Due to the sensitive character of genetic information, protecting privacy and keeping confidentiality become important topics. To minimize ethical problems and achieve scientific goals to its maximum degree, each country strives to build population-based genomic cohort research project, by organizing public consultation, trying public and expert consensus in research, and providing safeguards to protect privacy and confidentiality.

Statistical Issues in Genomic Cohort Studies (유전체 코호트 연구의 주요 통계학적 과제)

  • Park, So-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.108-113
    • /
    • 2007
  • When conducting large-scale cohort studies, numerous statistical issues arise from the range of study design, data collection, data analysis and interpretation. In genomic cohort studies, these statistical problems become more complicated, which need to be carefully dealt with. Rapid technical advances in genomic studies produce enormous amount of data to be analyzed and traditional statistical methods are no longer sufficient to handle these data. In this paper, we reviewed several important statistical issues that occur frequently in large-scale genomic cohort studies, including measurement error and its relevant correction methods, cost-efficient design strategy for main cohort and validation studies, inflated Type I error, gene-gene and gene-environment interaction and time-varying hazard ratios. It is very important to employ appropriate statistical methods in order to make the best use of valuable cohort data and produce valid and reliable study results.

Current Status of Genomic Epidemiology Reseach (유전체 역학연구의 동향)

  • Lee, Kyoung-Mu;Kang, Dae-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.3
    • /
    • pp.213-222
    • /
    • 2003
  • Genomic epidemiology is defined as 'an evoking field of inquiring that uses the systematic application of epidemiologic methods are approaches in population-based studies of the impact of human genetic variation on health and disease (Khoury, 1998)'. Most human diseases are caused by the intricate interaction among environmental exposures and genetic susceptibility factors. Susceptibility genes involved in disease pathogenesis are categorized into two groups: high penetrance genes (i.e., BRAC1, RB, etc.) and lour penetranoe genes (i.e., GSTs, Cyps, XRCC1, ets.), and low penetrance susceptibility genes has the higher priority for epidemiological research due to high population attributable risk. In this paper, the summarized results of the association study between single nucleotide polymorphisms (SNPs) and breast cancer in Korea were introduced and the international trends of genomic epidemiology research were reviewed with an emphasis on internee-based case-control and cohort consortium.

The Korea Cohort Consortium: The Future of Pooling Cohort Studies

  • Lee, Sangjun;Ko, Kwang-Pil;Lee, Jung Eun;Kim, Inah;Jee, Sun Ha;Shin, Aesun;Kweon, Sun-Seog;Shin, Min-Ho;Park, Sangmin;Ryu, Seungho;Yang, Sun Young;Choi, Seung Ho;Kim, Jeongseon;Yi, Sang-Wook;Kang, Daehee;Yoo, Keun-Young;Park, Sue K.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.5
    • /
    • pp.464-474
    • /
    • 2022
  • Objectives: We introduced the cohort studies included in the Korean Cohort Consortium (KCC), focusing on large-scale cohort studies established in Korea with a prolonged follow-up period. Moreover, we also provided projections of the follow-up and estimates of the sample size that would be necessary for big-data analyses based on pooling established cohort studies, including population-based genomic studies. Methods: We mainly focused on the characteristics of individual cohort studies from the KCC. We developed "PROFAN", a Shiny application for projecting the follow-up period to achieve a certain number of cases when pooling established cohort studies. As examples, we projected the follow-up periods for 5000 cases of gastric cancer, 2500 cases of prostate and breast cancer, and 500 cases of non-Hodgkin lymphoma. The sample sizes for sequencing-based analyses based on a 1:1 case-control study were also calculated. Results: The KCC consisted of 8 individual cohort studies, of which 3 were community-based and 5 were health screening-based cohorts. The population-based cohort studies were mainly organized by Korean government agencies and research institutes. The projected follow-up period was at least 10 years to achieve 5000 cases based on a cohort of 0.5 million participants. The mean of the minimum to maximum sample sizes for performing sequencing analyses was 5917-72 102. Conclusions: We propose an approach to establish a large-scale consortium based on the standardization and harmonization of existing cohort studies to obtain adequate statistical power with a sufficient sample size to analyze high-risk groups or rare cancer subtypes.

Development of a Semi-quantitative Food Frequency Questionnaire Based on Dietary Data from the Korea National Health and Nutrition Examination Survey

  • Younjhin Ahn;Lee, Ji-Eun;Paik, Hee-Young;Lee, Hong-Kyu;Inho Jo;Kim, Kuchan m
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.173-184
    • /
    • 2003
  • Objective : This study was carried out to develop a semi-quantitative food frequency Questionnaire (SQFFQ) for estimating average dietary intake to determine the risk factor for lifestyle-related diseases in a conjoint cohort study. Design : We developed an SQFFQ for genomic epidemiological studies based on the data in the'98 Korea Health and Nutrition Examination Survey. A subset of data on informative food items was collected using the 24-hr recall method with 2,714 adults aged 40 or older living in middle-sized cities or in rural areas in Korea. The cumulative percent contribution and cumulative multiple regression coefficients of 17 nutrients (energy, fat, carbohydrate, protein, fiber, iron, potassium, sodium, calcium, phosphorus, vitamin A, retinol, $\beta$-carotene, vitamin $B_1$, vitamin $B_2$, niacin and vitamin C) of each food were computed. Results : Two hundred and forty-nine foods, which were selected based on their 0.9 cumulative percent contribution, and 254 foods, which were selected based on their 0.9 cumulative multiple regression coefficients, respectively, were grouped into 97 food groups according to their nutrient contents. Several popular Korean foods, which were missing from the list due to the seasonality of the survey, were included. The portion sizes were derived from the same data set. The SQFFQ covered 84.8 percent of the intake of 17 nutrients in the one day diet record data of our 326 cohort study subjects. Conclusions . The final list included 103 food items. The foods list in the SQFFQ described herein accounted for 84.8 percent of the average intake of 17 nutrients. Therefore, the list could be used for the assessment of the baseline dietary intakes of the conjoint cohort studies.

High Throughput Genotyping for Genomic Cohort Study (유전체 코호트 연구를 위한 대용량 염기서열 분석)

  • Park, Woong-Yang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • Human Genome Project (HGP) could unveil the secrets of human being by a long script of genetic codes, which enabled us to get access to mine the cause of diseases more efficiently. Two wheels for HGP, bioinformatics and high throughput technology are essential techniques for the genomic medicine. While microarray platforms are still evolving, we can screen more than 500,000 genotypes at once. Even we can sequence the whole genome of an organism within a day. Because the future medicne will focus on the genetic susceptibility of individuals, we need to find genetic variations of each person by efficient genotyping methods.

CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations

  • Jeong, Yong-Bok;Kim, Tae-Min;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.126-129
    • /
    • 2008
  • The robust identification and comprehensive profiling of copy number alterations (CNAs) is highly challenging. The amount of data obtained from high-throughput technologies such as array-based comparative genomic hybridization is often too large and it is required to develop a comprehensive and versatile tool for the detection and visualization of CNAs in a genome-wide scale. With this respective, we introduce a software framework, CGHscape that was originally developed to explore the CNAs for the study of copy number variation (CNV) or tumor biology. As a standalone program, CGHscape can be easily installed and run in Microsoft Windows platform. With a user-friendly interface, CGHscape provides a method for data smoothing to cope with the intrinsic noise of array data and CNA detection based on SW-ARRAY algorithm. The analysis results can be demonstrated as log2 plots for individual chromosomes or genomic distribution of identified CNAs. With extended applicability, CGHscape can be used for the initial screening and visualization of CNAs facilitating the cataloguing and characterizing chromosomal alterations of a cohort of samples.

Genomic Susceptibility Analysis for Atopy Disease Using Cord Blood DNA in a Small Cohort

  • Koh, Eun Jung;Kim, Seung Jun;Ahn, Jeong Jin;Yang, Jungeun;Oh, Moon Ju;Hwang, Seung Yong
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.304-308
    • /
    • 2018
  • Atopic disease is caused by a complex combination of environmental factors and genetic factors, and studies on influence of exposure to various environmental factors on atopic diseases are continuously reported. However, the exact cause of atopic dermatitis is not yet known. Our study was conducted to analyse the association of SNPs with the development of atopic disease in a small cohort. Samples were collected from the Mothers' and Children's Environmental Health (MOCEH) study and 192 cord blood DNA samples were used to identify incidence of atopy due to influence of exposure to environmental factors. Genetic elements were analysed using a precision medicine research (PMR) array designed with various SNPs for personalized medicine. Case-control analysis of atopy disease revealed 253 significant variants (p<0.0001) and SNPs on five genes (CARD11, ZNF365, KIF3A, DMRTA1, and SFMBT1) were variants identified in previous atopic studies. These results are important to confirm the genetic mutation that may lead to the onset of foetal atopy due to maternal exposure to harmful environmental factors. Our results also suggest that a small-scale genome-wide association analysis is beneficial to confirm specific variants as direct factors in the development of atopy.

Necessity of Epigenetic Epidemiology Studies on the Carcinogenesis of Lung Cancer in Never Smokers

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.5
    • /
    • pp.263-264
    • /
    • 2018
  • Based on epidemiological and genomic characteristics, lung cancer in never smokers (LCNS) is a different disease from lung cancer in smokers. Based on current research, the main risk factor for LCNS may be air pollution. A recent case-control study in Koreans reported that nitrogen dioxide ($NO_2$) may be a risk factor for LCNS. Additionally, a cohort study showed that exposure to $NO_2$ was associated with significant hypomethylation. Thus, epigenetic epidemiology studies are needed in the near future to evaluate the carcinogenesis of LCNS according to chronic exposure to air pollution and/or viral infections.

Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas

  • Eun Kyoung Hong;Seung Hong Choi;Dong Jae Shin;Sang Won Jo;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn;Sung-Hye Park;Jae-Kyoung Won;Tae Min Kim;Chul-Kee Park;Il Han Kim;Soon-Tae Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2021
  • Objective: To evaluate the association of MRI features with the major genomic profiles and prognosis of World Health Organization grade III (G3) gliomas compared with those of glioblastomas (GBMs). Materials and Methods: We enrolled 76 G3 glioma and 155 GBM patients with pathologically confirmed disease who had pretreatment brain MRI and major genetic information of tumors. Qualitative and quantitative imaging features, including volumetrics and histogram parameters, such as normalized cerebral blood volume (nCBV), cerebral blood flow (nCBF), and apparent diffusion coefficient (nADC) were evaluated. The G3 gliomas were divided into three groups for the analysis: with this isocitrate dehydrogenase (IDH)-mutation, IDH mutation and a chromosome arm 1p/19q-codeleted (IDHmut1p/19qdel), IDH mutation, 1p/19q-nondeleted (IDHmut1p/19qnondel), and IDH wildtype (IDHwt). A prediction model for the genetic profiles of G3 gliomas was developed and validated on a separate cohort. Both the quantitative and qualitative imaging parameters and progression-free survival (PFS) of G3 gliomas were compared and survival analysis was performed. Moreover, the imaging parameters and PFS between IDHwt G3 gliomas and GBMs were compared. Results: IDHmut G3 gliomas showed a larger volume (p = 0.017), lower nCBF (p = 0.048), and higher nADC (p = 0.007) than IDHwt. Between the IDHmut tumors, IDHmut1p/19qdel G3 gliomas had higher nCBV (p = 0.024) and lower nADC (p = 0.002) than IDHmut1p/19qnondel G3 gliomas. Moreover, IDHmut1p/19qdel tumors had the best prognosis and IDHwt tumors had the worst prognosis among G3 gliomas (p < 0.001). PFS was significantly associated with the 95th percentile values of nCBV and nCBF in G3 gliomas. There was no significant difference in neither PFS nor imaging features between IDHwt G3 gliomas and IDHwt GBMs. Conclusion: We found significant differences in MRI features, including volumetrics, CBV, and ADC, in G3 gliomas, according to IDH mutation and 1p/19q codeletion status, which can be utilized for the prediction of genomic profiles and the prognosis of G3 glioma patients. The MRI signatures and prognosis of IDHwt G3 gliomas tend to follow those of IDHwt GBMs.