• Title/Summary/Keyword: Genomic Selection

Search Result 223, Processing Time 0.029 seconds

Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs

  • Wu, Xudong;Zhou, Ren;Zhang, Wei;Cao, Bangji;Xia, Jing;Wang, Caiyun;Zhang, Xiaodong;Chu, Mingxing;Yin, Zongjun;Ding, Yueyun
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1895-1902
    • /
    • 2021
  • Objective: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that can reveal inbreeding levels, selection pressure, and mating schemes. In this study, ROHs were evaluated in Wannan Black pigs to assess the inbreeding levels and the genome regions with high ROH frequency. Methods: In a previous study, we obtained 501.52 GB of raw data from resequencing (10×) of the genome and identified 21,316,754 single-nucleotide variants in 20 Wannan Black pig samples. We investigated the number, length, and frequency of ROH using resequencing data to characterize the homozygosity in Wannan Black pigs and identified genomic regions with high ROH frequencies. Results: In this work, 1,813 ROHs (837 ROHs in 100 to 500 kb, 449 ROHs in 500 to 1,000 kb, 527 ROHs in >1,000 kb) were identified in all samples, and the average genomic inbreeding coefficient (FROH) in Wannan Black pigs was 0.5234. Sixty-one regions on chromosomes 2, 3, 7, 8, 13, 15, and 16 harbored ROH islands. In total, 105 genes were identified in 42 ROH islands, among which some genes were related to production traits. Conclusion: This is the first study to identify ROH across the genome of Wannan Black pigs, the Chinese native breed of the Anhui province. Overall, Wannan Black pigs have high levels of inbreeding due to the influence of ancient and recent inbreeding due to the genome. These findings are a reliable resource for future studies and contribute to save and use the germplasm resources of Wannan Black pigs.

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin;Heo, Sojeong;Choi, Jihoon;Kim, Minsoo;Pyo, Eunji;Lee, Myounghee;Shin, Sangick;Lee, Jaehwan;Sim, Jaehun;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.298-303
    • /
    • 2021
  • Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.

Comparison of the estimated breeding value and accuracy by imputation reference Beadchip platform and scaling factor of the genomic relationship matrix in Hanwoo cattle

  • Soo Hyun, Lee;Chang Gwon, Dang;Mina, Park;Seung Soo, Lee;Young Chang, Lee;Jae Gu, Lee;Hyuk Kee, Chang;Ho Baek, Yoon;Chung-il, Cho;Sang Hong, Lee;Tae Jeong, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.431-440
    • /
    • 2022
  • Hanwoo cattle are a unique and historical breed in Korea that have been genetically improved and maintained by the national evaluation and selection system. The aim of this study was to provide information that can help improve the accuracy of the estimated breeding values in Hanwoo cattle by showing the difference between the imputation reference chip platforms of genomic data and the scaling factor of the genetic relationship matrix (GRM). In this study, nine sets of data were compared that consisted of 3 reference platforms each with 3 different scaling factors (-0.5, 0 and 0.5). The evaluation was performed using MTG2.0 with nine different GRMs for the same number of genotyped animals, pedigree, and phenotype data. A five multi-trait model was used for the evaluation in this study which is the same model used in the national evaluation system. Our results show that the Hanwoo custom v1 platform is the best option for all traits, providing a mean accuracy improvement by 0.1 - 0.3%. In the case of the scaling factor, regardless of the imputation chip platform, a setting of -1 resulted in a better accuracy increased by 0.5 to 1.6% compared to the other scaling factors. In conclusion, this study revealed that Hanwoo custom v1 used as the imputation reference chip platform and a scaling factor of -0.5 can improve the accuracy of the estimated breeding value in the Hanwoo population. This information could help to improve the current evaluation system.

Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F2 crossbred chicken population

  • Minjun Kim;Eunjin Cho;Jean Pierre Munyaneza;Thisarani Kalhari Ediriweera;Jihye Cha;Daehyeok Jin;Sunghyun Cho;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Flavor is an important sensory trait of chicken meat. The free amino acid (FAA) and nucleotide (NT) components of meat are major factors affecting meat flavor during the cooking process. As a genetic approach to improve meat flavor, we performed a genome-wide association study (GWAS) to identify the potential candidate genes related to the FAA and NT components of chicken breast meat. Measurements of FAA and NT components were recorded at the age of 10 weeks from 764 and 767 birds, respectively, using a White leghorn and Yeonsan ogye crossbred F2 chicken population. For genotyping, we used 60K Illumina single-nucleotide polymorphism (SNP) chips. We found a total of nine significant SNPs for five FAA traits (arginine, glycine, lysine, threonine content, and the essential FAAs and one NT trait (inosine content), and six significant genomic regions were identified, including three regions shared among the essential FAAs, arginine, and inosine content traits. A list of potential candidate genes in significant genomic regions was detected, including the KCNRG, KCNIP4, HOXA3, THSD7B, and MMUT genes. The essential FAAs had significant gene regions the same as arginine. The genes related to arginine content were involved in nitric oxide metabolism, while the inosine content was possibly affected by insulin activity. Moreover, the threonine content could be related to methylmalonyl-CoA mutase. The genes and SNPs identified in this study might be useful markers in chicken selection and breeding for chicken meat flavor.

Studies on the Construction of Mutant Diversity Pool (MDP) lines, and their Genomic Characterization in Soybean

  • Dong-Gun Kim;Sang Hoon Kim;Chang-Hyu Bae;Soon-Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.9-9
    • /
    • 2021
  • Mutation breeding is useful for improving agronomic characteristics of various crops. In this study, we constructed soybean Mutant Diversity Pool (MDP) from 1,695 gamma-irradiated mutants through two selection phases over M1 to M12 generations; we selected 523 mutant lines exhibiting at least 30% superior agricultural characteristics, and, second, we eliminated redundant morphological phenotypes in the M12 generation. Finally, we constructed 208 MDP lines and investigated 11 agronomic traits. We then assessed the genetic diversity and inter-relationships of these MDP lines using target region amplification polymorphism (TRAP) markers. Among the different TRAP primer combinations, polymorphism levels and PIC values averaged 59.71% and 0.15, respectively. Dendrogram and population structure analyses divided the MDP lines into four major groups. According to an analysis of AMOVA, the percentage of inter-population variation among mutants was 11.320 (20.6%), whereas mutant inter-population variation ranged from 0.231 (0.4%) to 14.324 (26.1%). Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. In an analysis of the genome-wide association study (GWAS) using based on the genotyping-by-sequencing (GBS), we detected 66 SNPs located on 13 different chromosomes were found to be highly associated with four agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with those previously reported for other genetic resource populations, including natural accessions and recombinant inbred line. Our observations suggest that genomic changes in mutant individuals induced by gamma rays occurred at the same loci as those of natural soybean population. This study has demonstrated that the integration of GBS and GWAS can serve as a powerful complementary approach to gamma-ray mutation for the dissection of complex traits in soybean.

  • PDF

Current status and prospects of chrysanthemum genomics (국화 유전체 연구의 동향)

  • Won, So Youn;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.272-280
    • /
    • 2016
  • Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.

Associations of the Porcine Melanocortin-4 Receptor (MC4R) Gene with Growth Traits in Duroc Pigs (듀록 품종의 Melanocortin-4 Receptor(MC4R) 유전자와 성장형질과의 연관성 분석)

  • Cho, K.H.;Kim, M.J.;Choi, B.H.;Jeon, G.J.;Ryu, J.W.;Jung, H.J.;Kim, I.C.;Lee, H.K.;Jeon, G.J.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.437-442
    • /
    • 2007
  • The melanocortin-4 receptor(MC4R) is virtually expressed in all brain regions and plays an important role in energy homeostasis in mammals. MC4R has been intensively studied as a trait gene controlling economically important traits, such as growth and feed conversion, etc. Six hundreds and sixty Duroc pigs were genotyped for the MC4R locus and analyzed their relationships with breeding values for average daily gain(ADG), backfat thickness(BF), days to 90kg(D90) and feed conversion(FC). The estimated genotype frequencies for the all Duroc pigs were: 30.8%, 45.2%, 24.1% for AA, AB and BB genotypes, respectively. The mutant A allele was significantly associated with ADG, D90 and BF whereas no significant relationship was found with FC. The change of gene frequencies by generation was shown in both selected and culled groups. These results indicate that the MC4R polymorphism could be integrated in the present selection program to realize a marker-assisted selection for the growth traits of the Duroc population.

Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains

  • Ma, Yuechao;Chen, Qixin;Cui, Yi;Du, Lihong;Shi, Tuo;Xu, Qingyang;Ma, Qian;Xie, Xixian;Chen, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1916-1927
    • /
    • 2018
  • Corynebacterium glutamicum is an excellent platform for the production of amino acids, and is widely used in the fermentation industry. Most industrial strains are traditionally obtained by repeated processes of random mutation and selection, but the genotype of these strains is often unclear owing to the absence of genomic information. As such, it is difficult to improve the growth and amino acid production of these strains via metabolic engineering. In this study, we generated a complete genome map of an industrial L-valine-producing strain, C. glutamicum XV. In order to establish the relationship between genotypes and physiological characteristics, a comparative genomic analysis was performed to explore the core genome, structural variations, and gene mutations referring to an industrial L-leucine-producing strain, C. glutamicum CP, and the widely used C. glutamicum ATCC 13032. The results indicate that a 36,349 bp repeat sequence in the CP genome contained an additional copy each of lrp and brnFE genes, which benefited the export of L-leucine. However, in XV, the kgd and panB genes were disrupted by nucleotide insertion, which increase the availability of precursors to synthesize L-valine. Moreover, the specific amino acid substitutions in key enzymes increased their activities. Additionally, a novel strategy is proposed to remodel central carbon metabolism and reduce pyruvate consumption without having a negative impact on cell growth by introducing the CP-derived mutant $H^+$/citrate symporter. These results further our understanding regarding the metabolic networks in these strains and help to elucidate the influence of different genotypes on these processes.

Isolation and Identifieation of Entomopathogenic Nematodes from Soil and Insect (토양과 곤충 사체로부터 곤충병원성 선충의 분리 및 동정)

  • 한상미;한명세
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.321-330
    • /
    • 1999
  • Nematodes were isolated using silkwom trap through the investigation of 100 soil samples from various biotopes in Korea. The 30 nematode strains from soil and dead insects by the pathogenicity aganinst silkworms (Bombyx mori mori) and insect pests of Calliphora vomitoria, Pseufazetia separata, Palomena angulosa, and Melolontha incana. Mortailty of the silkworm larvae and pupae were as high as 100% by nematode infection, those of insect of pests were varied from 20 to 100%. The 30 strains of entemopathogenic nematodes were classified into five groups of Rhabditidae, Diplogatroidae, Heterorhabitidae, Steinernematidae, and Tylenchida by morphological criteria. The genetic relationships among the 30 nematode strains were analyzed by various RAPD bands with twenty primers. The 30 nematode strains were classified into six major subgroups on the basis of the genetic similarity coefficient of 0.853. The grouping by RAPD was agree with those of morphological taxa in discrimination of the higher group, however, was not completely agree in the subgroup. The family Steinernematidae belong to Rhabditida was clarified as closer to the Tylenchida, rather than the other Rhabditida of Heterorhabitidae, Rhabditidae, and Diplogatroidae in genetic distance valule. From the result of the morphological classification and RAPD of the genomic DNA showed that genetic relationship analysis furnish infurmation on phylogenetic classification and relationships of entomopathogenic nematodes. The application of genetic similarity will overcome the limitation of taxonomy and classification of morphologically simple nematode. Several primers were confirmed those utility of identification for individual nematode strains, the methods of molecular genetics secured the simplicity, rapidity and accuracy on the selection of entomopathogenic nematodes.

  • PDF

Genome Survey and Microsatellite Marker Selection of Tegillarca granosa (꼬막(Tegillarca granosa)의 유전적 다양성 분석을 위한 드래프트 게놈분석과 마이크로새틀라이트 마커 발굴)

  • Kim, Jinmu;Lee, Seung Jae;Jo, Euna;Choi, Eunkyung;Kim, Hyeon Jin;Lee, Jung Sick;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.38-46
    • /
    • 2021
  • The blood clam, Tegillarca granosa, is economically important in marine bivalve and is used in fisheries industry among western Pacific Ocean Coasts especially in Korea, China, and Japan. The number of chromosomes in the blood clam is known as 2n=38, but the genome size and genetic information of the genome are not still clear. In order to predict the genomic size of the T. granosa, the in-silico analysis analysed the genomic size using short DNA sequence information obtained using the NGS Illumina HiSeq platform. As a result, the genomic size of T. granosa was estimated to be 770.61 Mb. Subsequently, a draft genome assembly was performed through the MaSuRCA assembler, and a simple sequence repeat (SSR) analysis was done by using the QDD pipeline. 43,944 SSRs were detected from the genome of T. granosa and 69.51% di-nucleotide, 16.68% trinucleotide, 12.96% tetra-nucleotide, 0.82% penta-nucleotide, and 0.03% hexa-nucleotide were consisted. 100 primer sets that could be used for genetic diversity studies were selected. In the future, this study will help identify the genetic diversity of T. granosa and population genetic studies, and further identify the classification of origin between homogenous groups.