• Title/Summary/Keyword: Genomic DNA cloning

Search Result 276, Processing Time 0.033 seconds

Polymorphism and Genetic Relationships Among Magnaporthe grisea Isolates Obtained from Various Hosts by Using Repetitive DNA Sequences (기주가 다른 Magnaporthe grisea 균주간의 Polymorphism과 유전적 유연관계 분석)

  • 김홍기;김영태
    • Korean Journal Plant Pathology
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 1996
  • 도열병균, Magnaporthe grisea, 균주간의 유전적 유연관계를 분석하고 그들의 유전에 관한 '기본 정보를 얻고자 DNA polymorphism 분석을 실시하였다. 기주가 다른 도열병 균주들이 공시되었고 cloning에 의해 벼 도열병균 KJ201레이스 균주로부터 생성된 임의 선발 genomic clone들이 공시균주들간의 polymorphism을 밝히기 위해 사용되었던 바 그중 repectitive sequence를 보유한 repeated copy clone 하나가 선발되었다. Clone pMJ6에 의해 밝혀진 repetitive sequence는 Southern hybridization시 벼 분리균주에는 약 30개, 다른 기주 분리균에도 20∼33개의 밴드를 형성하였다. 반면 피 분리균주에는 단지 두 개의 밴드만을 나타내 분리기주가 다른 균주간에 뚜렷한 polymorphism이 존재하였으며 parsimony 분석에서도 역시 아주 먼 cluster를 형성하여 피 분리균은 다른 기주 분리균과 유전적으로 상당히 먼 것으로 추정되었다. 공시균의 genomic DNA를 HindIII로 처리했을 때 pMJ6에 의한 밴드양상은 공시균을 EcoRI으로 처리했을 때의 MGR probe의 밴드 양상과 유사하여 이 repeated copy clone이 도열병균주간의 유전적 유연관계를 분석하는데 MGR 못지않게 유용할 것으로 보인다.

  • PDF

Cloning and Characterization of Squalene Synthase (SQS) Gene from Ganoderma lucidum

  • Zhao, Ming-Wen;Liang, Wan-Qi;Zhang, Da-Bing;Wang, Nan;Wang, Chen-Guang;Pan, Ying-Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1106-1112
    • /
    • 2007
  • This report provides the complete nucleotide sequences of the full-length cDNA encoding squalene synthase (SQS) and its genomic DNA sequence from a triterpene-producing fungus, Ganoderma lucidum. The cDNA of the squalene synthase (SQS) (GenBank Accession Number: DQ494674) was found to contain an open reading frame (ORF) of 1,404 bp encoding a 468-amino-acid polypeptide, whereas the SQS genomic DNA sequence (GenBank Accession Number: DQ494675) consisted of 1,984 bp and contained four exons and three introns. Only one gene copy was present in the G. lucidum genome. The deduced amino acid sequence of Ganoderma lucidum squalene synthase (GI-SQS) exhibited a high homology with other fungal squalene synthase genes and contained six conserved domains. A phylogenetic analysis revealed that G. lucidum SQS belonged to the fungi SQS group, and was more closely related to the SQS of U. maydis than to those of other fungi. A gene expression analysis showed that the expression level was relatively low in mycelia incubated for 12 days, increased after 14 to 20 days of incubation, and reached a relatively high level in the mushroom primordia. Functional complementation of GI-SQS in a SQS-deficient strain of Saccharomyces cerevisiae confirmed that the cloned cDNA encoded a squalene synthase.

Effect of Non-homologous Spacing in Target DNA Sequence on the Frequency of Cloning Based Homologous Recombination (Target DNA 염기서열 내에 존재하는 비상동성 간격이 상동성재조합을 이용한 클로닝 빈도에 미치는 영향)

  • Kim Jae-Woo;Do Eun-Ju;Yoon Se-Lyun;Jeong Yun-Hee;Yoon Young-Ho;Leem Sun-Hee;Sunwoo Yangil;Park In-Ho
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.239-245
    • /
    • 2005
  • Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences. In this study, we examined the effect of non-homologous spacing sequence in target hooks on homologous recombination using a plasmid model system. The efficiency of homologous recombination between the modified his3-TRP1-his3 fragments and HlS3 gene on plasmid were analyzed by the characterization of $Ura^+$ transformants. The numbers of $Ura^+$ transformant showed same level when seven different modified his3-TRP1-his3 fragments were used. But the percentage of positive recombinants. $Trp^+His^-$, dramatically decreased when used the modified his3-TRP1-his3 fragments contained incorrect spacing of nonhomologous region. As a result, we suggest that incorrect spacing inhibits the homologous recombination between target hook and substrate DNA. Therefore, we should consider the correct spacing in target hook when the target hook are used for cloning of orthologue gene.

Molecular Cloning of the Gene for $\alpha$-Acylamino-$\beta$-lactam Acylhydrolase from Acetobacter turbidans by Immunochemical Detection Method (면역화학적 방법에 의한 Acetobacter turbidans의 $\alpha$-Acylamino-$\beta$-lactam Acylhydrolase의 유전자 클론화)

  • Nam, Doo-Hyun;Dewey D.Y. Ryu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.363-368
    • /
    • 1988
  • Molecular cloning of gene for $\alpha$-acylamino-$\beta$-lactam acylhydrolase (ALAH) III from Acetobacter turbidans has been attempted by immunochemical detection method, in which polyclonal antibody from mouse Balb/c against this enzyme was employed as a probe. As a cloning vector, λ gtll was chosen for this purpose. Two positive clones has been selected from genomic libraries of A. turbidans, which had somewhat different binding affinities on anti-ALAH III umm and anti-$\beta$-galactosidase. By restriction analysis, both clones has been turned out to lose one of EeoRI sites. From these results, it concluded that deletion of DNA between lacZ gene and inserted DNA has occurred during replication of these clones in host cells.

  • PDF

Isolation of Human and Mouse Orthologue HPRT Genes by Transformation-Associated Recombination (TAR) cloning (TAR cloning 법에 의한 인간 및 마우스의 상동성 HPRT 유전자의 분리)

  • Do, Eun-Ju;Kim, Jae-Woo;Chung, Chung-Nam;Park, In-Ho;Leem, Sun-Hee
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1036-1043
    • /
    • 2006
  • The transformation-associated recombination (TAR) cloning technique allows selective isolation of chromosome regions or genes from complex genome. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosome region of interest. This method involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences (hooks). To examine whether TAR cloning can be applied to the isolation of gene homologues, we chose the HPRT genes from human and mouse genome. As results, the yield of positive clones for HPRT gene from human and mouse genome when using a TAR vector containing mHPRT hook or hHPRT hook was almost same level. Analysis of the gap regions in mHPRT revealed that they contain abnormalities that could result in instability of the sequences. In conclusion, we were able to use the TAR cloning technology to isolate gene homologue (orthologue) from nonidentical genome. Moreover, the use of the TAR cloning system may accelerate work on closing the remaining gaps in mammalian genome to achieve the goal of annotation of all mammalian genes.

Molecular Cloning of nifHD from Rhizobium sp. SNU003 (Rhizobium sp. SNU003의 nifHD 클로닝)

  • 강명수;안정선
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • Genes for dinitrogenase reductase (nifH) and dinitogenase a subunit (nifD) were found to be located on 7.9 kb of EcoRI, 6.5 kb of Sail, 7.3 kb of HindlII and 4.4 kb of Pstl fragments of the genomic blot of Rhizobium sp. SNU003. a symbiotic strain from root nodule of Canavalia lineata. Nine recombinant phage nif-clones were selected from the genomic library constructed by using EMBL-3 BamHI arms of bacteriophage lambda. Among them. Rnif-6 had insert DNA of 15.3 kb. in which 7.6 kb of BamHI!SacI fragment contained nifHD region. Therefore, the 7.6 kb fragment was subcloned into pUC19 and partial restriction map was constructed. As the results, nifH and nifD were found to be located continuously on 4.5 kb of BamHI/BglIl in the genome of Rhizobium sp. SNU003 strain.

  • PDF

Epigenetic Reprogramming and Cloning (후성 유전학적 리프로그래밍과 클로닝)

  • Han Yong-Mahn;Kang Yong-Kook;Koo Deog-Bon;Lee Kyung-Kwang
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 2003
  • Zygote genome should entail a complex process of epigenetic reprogramming including a global DNA demethylation to reach a totipotency or pluripotency during early mammalian development. In this study, we have analyzed methylation patterns in cloned bovine embryos to monitor the epigenetic reprogramming process of donor genomic DNA. Aberrant DNA methylation patterns were observed in various genomic regions of cloned embryos except single-copy gene sequences. The overall genomic methylation status of cloned embryos was quite different from that of normal embryos produced in viかo or in vivo. Abnormal methylation profiles were also specifically represented in trophectoderm cells of cloned embryos, which probably result in widespread gene dysregulation in extraembryonic region or placental dysfunction familiar to cloned animals. Our findings suggest that developmental failures of cloned embryos are due to incomplete epigenetic reprogramming of donor genomic DNA. Understanding the epigenetic reprogramming processes of donor genome will clearly define the faulty development of cloned embryos.

  • PDF